Cho a2-b2=4c2. Chứng minh:
(5a-3b+8c)(5a-3b-8c)=(3a-5b)2
Cho a2 -b2 =4c2. Chứng minh rằng: (5a -3b +8c)( 5a -3b +8c) = (3a -5b)2
Cho a2 - b2= 4c2. Chứng minh rằng: (5a - 3b + 8c).(5a - 3b - 8c) = (3a - 5b)2
Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=\left(5a-3b\right)^2-16.4c^2\)
\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
cho a2 - b2 = 4c2 chứng minh (5a - 3b +8c) (5a-3b-8c) = (3a-5b)2
VT= (5a-3b)^2 - 64c^2=25a^2-30ab + 9b^2 -16a^2+16b^2=9a^2-30ab+25b^2= (3a-5b)^2 = VP (đpcm)
Xét VT ta có :
VT = ( 5a - 3b + 8c )( 5a - 3b - 8c )
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 )
= 25a2 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2 = VP
=> đpcm
Cho a2-b2=4c2 .Chứng minh rằng:
(5a-3b+8c)(5a-3b-8c)=(3a-5b)2
biến đổi vế trái
\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-64c^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(25a^2-16a^2\right)-30ab+\left(9b^2+16b^2\right)\)
\(\Leftrightarrow9a^2-30ab+25b^2\)
\(\Leftrightarrow\left(3a-5b\right)^2\) (điều cần c/m)
cho a2 + b2 = 4c2. Chứng minh: (5a - 3b + 8c). (5a - 3b - 8c) = (3a - 5b)2
Sửa đề của bạn : a2 - b2 = 4c2
(5a - 3b + 8c). (5a - 3b - 8c) = (5a - 3b)2 - (8c)2 = 25a2 - 30ab + 9b2 - 16. (a2 - b2) = 9a2 - 30ab + 25b2 = (3a - 5b)2
Cho a2 - b2 = 4c2 . Chứng minh hđt:
(5a - 3b + 8c) (5a - 3b + 8c) = (3a - 5b)2
cho a^2 -b^2 =4c^2 cmr (5a-3b+8c) (5a-3b-8c)=(3a-5b)^2
cho a2 -b2 = 4c2 chứng minh rằng hằng đẳng thức
(5a -3b +8c) (5a - 3b -8c ) = (3a -5b)2
\(a^2-b^2=4c^2\)
Chứng minh rằng:(5a-3b+8c)(5a-3b-8c)=\(\left(3a-5b\right)^{2^{ }}\)