Cho A= \(\dfrac{x+5}{\sqrt{x}+1}\) (với \(x\ge0;x\ne4\)). Chứng minh rằng A≥3 với mọi x thỏa mãn: 0 ≤ x ≤ 1
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với \(x\ge0,x\ne25\)
Biểu thức A sau khi rút gọn là A = \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) So sánh A với 2
Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)
Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)
=> A < 2
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) Tìm các giá trị của x để A = \(\dfrac{2\sqrt{x}}{3}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)
Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:
\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)
\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)
\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)
\(\Leftrightarrow2x+7\sqrt{x}+15=0\)
Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))
nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)
#\(Toru\)
\(\text{Cho biểu thức :B= ( \dfrac{15-\sqrt{x}}{x-25}+ \dfrac{2}{\sqrt{x}+5})\times(\dfrac{\sqrt{x\:-5}}{\sqrt{x\:+1}}) (với x\ge0;x\ne25 ) a) Rút gọn biểu thức b) Tìm giá trị của để }\)
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x+1}}{5-\sqrt{x}}-\dfrac{5-9\sqrt{x}}{x-25}\) với \(x\ge0,x\ne25\)
rút gọn A
2, tìm tất cả các giá trị của x để A<1
Lời giải:
a.
$A=\frac{\sqrt{x}(5-\sqrt{x})-(\sqrt{x}+5)(\sqrt{x}+1)}{(\sqrt{x}+5)(5-\sqrt{x})}-\frac{5-9\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}$
$=\frac{-2x-10\sqrt{x}}{(\sqrt{x}+5)(5-\sqrt{x})}$
$=\frac{-2\sqrt{x}(\sqrt{x}+5)}{(\sqrt{x}+5)(5-\sqrt{x})}=\frac{2\sqrt{x}}{\sqrt{x}-5}$
b.
$A< 1\Leftrightarrow \frac{2\sqrt{x}}{\sqrt{x}-5}<1$
$\Leftrightarrow \frac{\sqrt{x}+5}{\sqrt{x}-5}<0$
$\Leftrightarrow \sqrt{x}-5<0$
$\Leftrightarrow 0\leq x< 25$
Kết hợp với đkxđ suy ra $0\leq x< 25$
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x+1}}{5-\sqrt{x}}-\dfrac{5-9\sqrt{x}}{x-25}\) với \(x\ge0,x\ne25\)
rút gọn A
2, tìm tất cả các giá trị của x để A<1
Bạn xem tại đây:
https://hoc24.vn/cau-hoi/adfracsqrtxsqrtx5-dfracsqrtx15-sqrtx-dfrac5-9sqrtxx-25-voi-xge0xne25rut-gon-a2-tim-tat-ca-cac-gia-tri-cua-x-de-a1.7900547231312
Rút gọn
\(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
B1. Với \(x\ge0,x\ne4.Chobiểuthức\)
\(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{2-\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{1}{x\sqrt{x}+27}\)
a, tính giá trị biểu thức khi B= 1/4
b, Rút gọn A
c, Tìm giá trị của x để A>1/2
d, Với C= B : A. Tìm GTLN C
a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)
\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)
\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)
\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)
=-1
Bài 1:
a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:
\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)
b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow3-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
2) Tìm giá trị nhỏ nhất của A
2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)
\(=1-\dfrac{10}{\sqrt{x}+5}\)
\(\sqrt{x}+5>=5\forall x\)
=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)
=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)
=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: \(A_{min}=-1\) khi x=0
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) và B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-5}-\dfrac{8\sqrt{x}+20}{x-25}\) với \(x\ge0;x\ne25\)
c) Biểu thức B sau khi thu gọn được B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\). Tìm các giá trị của x để M = \(\dfrac{A}{B}\) nhận giá trị nguyên lớn nhất
c,M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) : \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)
M = 1 - \(\dfrac{7}{\sqrt{x}+3}\)
M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)
⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3 = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16
Mnguyên(max) = 1 - 1 = 0 xảy ra khi \(x\) = 16