So sánh
a, \(\dfrac{2005^{2014}+1}{2005^{2015}+1}\&\dfrac{2005^{2016}+1}{2005^{2017}+1}\)
b, \(\dfrac{19}{10}\&\dfrac{49}{40}\)
c, \(\dfrac{13}{20}\&\dfrac{33}{40}\)
So sánh: A=2005^2005+1/2005^2006+1và B=2015^2014+1/2005^2005+1
So sánh
A=\(\frac{2005^{2014}+1}{2005^{2015}+1}\)
với
B=\(\frac{2005^{2015}+1}{2005^{2016}+1}\)
Ta thấy: \(\left\{{}\begin{matrix}A=\dfrac{2005^{2014}+1}{2005^{2015}+1}< 1\\B=\dfrac{2005^{2015}+1}{2005^{2016}+1}< 1\end{matrix}\right.\)
\(\Rightarrow\) Áp dụng tính chất \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có:
\(\dfrac{2005^{2015}+1}{2005^{2016}+1}< \dfrac{2005^{2015}+1+2004}{2005^{2016}+1+2004}\)
\(=\dfrac{2005^{2015}+2005}{2005^{2016}+2005}=\dfrac{2005\left(2005^{2014}+1\right)}{2005\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)
\(\Rightarrow\dfrac{2005^{2015}+1}{2005^{2016}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)
Vậy \(B< A\)
Hay \(A>B\)
so sánh
a=\(\dfrac{2005^{2015}+1}{2005^{2016}+1}\)và b=\(\dfrac{2005^{2016}+1}{2005^{2017}+1}\)
haizzz mk nhớ bài này nhìu người hỏi lắm rồi,chịu khó tìm là thấy
So sánh: \(A=\frac{2015^{2005}+1}{2005^{2006}+1}\) và \(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
Giúp với Toán 6 đó!
A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\) < 1 => \(\frac{2005^{2005}+1}{2005^{2006}+1}\) < \(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\) = \(\frac{2005^{2005}+2005}{2005^{2006}+2005}\)= \(\frac{2005.\left(2005^{2004}+1\right)}{2005.\left(2005^{2005}+1\right)}\) = \(\frac{2005^{2004}+1}{2005^{2005}+1}\) = B => A<B.
Ta thấy:A=\(\frac{2005^{2005+1}}{2005^{2006}+1}\)<1
Ta có:A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\)<\(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\)=\(\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\)=b
Vậy A<B
Chắc chắn 100%
So sánh:
\(\dfrac{2004\cdot2005-1}{2004\cdot2005}\) và \(\dfrac{2005\cdot2006-1}{2005\cdot2006}\)
Các bạn giúp mình với mình cảm ơn nhiều ạ!!!!
\(\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)
\(\dfrac{2005.2006-1}{2004.2006}=1-\dfrac{1}{2005.2006}\)
\(Vì\dfrac{1}{2004.2005}>\dfrac{1}{2005.2006}\Rightarrow1-\dfrac{1}{2004.2005}< 1-\dfrac{1}{2005.2006}\Rightarrow\dfrac{2004.2005-1}{2004.2005}< \dfrac{2005.2006-1}{2004.2006}\)
Cho N=\(\dfrac{-7}{10^{2015}}\)+\(\dfrac{-15}{10^{2006}}\)và M=\(\dfrac{-15}{10^{2005}}\)+\(\dfrac{-7}{10^{2006}}\)
So sánh M và N (heo mì) TvT
Ta có :
\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2006}}\)
\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2005}}\)
Lại có :
\(-\dfrac{8}{10^{2006}}>\dfrac{-8}{10^{2005}}\Leftrightarrow M>N\)
ko tính hay so sánh
A : 2005 * 2005
B : 1995 * 2015
Ta có:
A=(1995+10)x2005
=1995x2005+10x2005
B=(10+2005)x1995
=10x1995+2005x1995
Mà 2005x1995=1995x2005 và 20x1995<20x2005 nên suy ra A>B
K cho mình nha
SO SÁNH A= 2005^2005+1/2005^2006+1 va B = 2005^2004+1/2005^2005+1
So sánh A= 2005^2005+1phần 2005^2005+1;B= 2005^2004+1phần 2005^2005 +1