Ta thấy: \(\left\{{}\begin{matrix}A=\dfrac{2005^{2014}+1}{2005^{2015}+1}< 1\\B=\dfrac{2005^{2015}+1}{2005^{2016}+1}< 1\end{matrix}\right.\)
\(\Rightarrow\) Áp dụng tính chất \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có:
\(\dfrac{2005^{2015}+1}{2005^{2016}+1}< \dfrac{2005^{2015}+1+2004}{2005^{2016}+1+2004}\)
\(=\dfrac{2005^{2015}+2005}{2005^{2016}+2005}=\dfrac{2005\left(2005^{2014}+1\right)}{2005\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)
\(\Rightarrow\dfrac{2005^{2015}+1}{2005^{2016}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)
Vậy \(B< A\)
Hay \(A>B\)