D=12-22+32-42+...+492-502
C=-502-492+482-472+......+22-12
\(C=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=1+2+3+4+...+49+50\)
\(=51\cdot25=1275\)
TÌm x
d)42-(2x+32)+12:2=6
Tính tổng
S=2+7+12+17+22+...+492+497
42-(2x+32)+12:2=6
42-2x-32+6=6
=> 42-32-2x=0
=> 10-2x=0
=>2x=10=> x=5
cái tính tổng thì theo công thức tính tổng: số đầu+số cuối)x số số hạng:2
số số hạng:(497-2):5+1=100
tổng là: 499x100:2
\(1,42-\left(2x+32\right)+12:2=6\)
\(\Rightarrow42-2x-32=0\)
\(\Rightarrow10-2x=0\)
\(\Rightarrow2x=10\Leftrightarrow x=5\)
\(2,S=2+7+12+17+...+497\)
\(\Rightarrow S=\frac{\left(497+2\right)\left[\left(497-2\right):5+1\right]}{2}\)
\(\Rightarrow S=\frac{499.100}{2}=499.50\)
\(\Rightarrow S=24950\)
D) 42 - (2x + 32 ) + 12 : 2 = 6
42 - (2x + 32 ) + 12 = 6 . 2
42 - ( 2x + 32 ) + 12 = 12
42 - (2x + 32 ) = 12 - 12
42 - (2x + 32) = 0
2x + 32 = 42 - 0
2x +32 = 42
2x = 42 - 32
2x = 10
x = 10 : 2
x = 5
Vậy x = 5
Tính tổng :
S = 2 + 7 + 12 + 17 + 22 +....+ 492 + 497
= ( 497 - 2 ) : 5 + 1
= 100
= (2 + 497 ) . 100 : 2
= 24 950
Vậy S = 24 950
Cho A=1/12+1/22+1/22+1/32+1/42+..........+ 1/502<2
tính nhanh
a)A=54.34-(152-1)(152+1)
b)C=502-492+482-472+...+22-12
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a) A= 54 . 34- (152-1).(152+1)
=(5.3)4-154-1
=154-154-1
=-1
a) A= 54.34 -(152-1).(152+1)
=(5.3)4 - (154-1)
= 154 - 154 +1
= 1
Bài) Chứng minh rằng
50/51<1+1/22+1/32+1/42+...+1/502<2
a) Tính tổng: A= 12+22+32+...+102
b) Tính theo cách hợp lí tổng B= 52+102+152+...+502
\(A=1^2+2^2+3^2+....+10^2\\ A=1^{ }+\left(1+1\right)\cdot2+3\cdot\left(2+1\right)+.....+10\cdot\left(9+1\right)\\ A=1+2\cdot1+2+3\cdot2+3+....+10\cdot9+10\\ A=\left(1+2+3...+10\right)+\left(1\cdot2+3\cdot2+.....+10\cdot9\right)\)
Gọi 1+2+3+...+10 là P
Số số hạng là: (10 - 1) : 1 +1 = 10 (số)
P = (10+1) . 10 : 2 = 55
P = 55
Gọi \(1\cdot2+2\cdot3+....+9\cdot10\) là C
\(C=1\cdot2+2\cdot3+....+9\cdot10\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+....+9\cdot10\cdot3\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+9\cdot10\cdot\left(11-8\right)\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+.....+9\cdot10\cdot11-8\cdot9\cdot10\\ 3\cdot C=9\cdot10\cdot11\\ 3\cdot C=990\\ C=330\)
\(=>A=P+C\\ =>A=55+330\\ A=385\)
b)
\(B=5^2+10^2+15^2+...+50^2\\ B=5^2+\left(2\cdot5\right)^2+\left(3\cdot5\right)^2+....+\left(5\cdot10\right)^2\\ B=5^2+2^2\cdot5^2+3^2\cdot5^2+...+5^2\cdot10^2\\ B=5^2\cdot\left(1+2^2+3^2+....+10^2\right)\\ B=25\cdot\left(1+2^2+3^2+....+10^2\right)\)
\(\left(1+2^2+3^2+....+10^2\right)=A\)
\(=>B=25\cdot A\\ B=25\cdot385\\ B=9625\)
Cho M = 12 + 22 + 32 + ... + 102 và N = 22 + 42 + 62 + ... + 202 . Tỉ số của N và M bằng:
A. 2 B. 4 C. 6 D. 8
M=(100-1).(100-22).(100-32). ... .(100-502)
-> M = (100 – 1).(100 – 2^2). (100 – 3^2)…(100 – 50^2)
M = (100 – 1).(100 – 2^2). (100 – 3^2)… (100 – 9^2) .(100 – 10^2) .(100 – 11^2) …(100 – 50^2)
M = (100 – 1).(100 – 2^2). (100 – 3^2)… (100 – 9^2). (100 – 100) .(100 – 11^2) …(100 – 50^2)
M = (100 – 1).(100 – 2^2). (100 – 3^2)… (100 – 9^2) .0.(100 – 11^2) …(100 – 50^2)
M = 0
Vậy M = 0.
12 + 22 + 32 + 42 + ....+ 2002
. Để tìm tổng của chuỗi 12 + 22 + 32 + 42 + .... + 2002, chúng ta có thể sử dụng công thức tính tổng của một chuỗi số học. Công thức là Sn = (n/2)(a + l), trong đó Sn là tổng của chuỗi, n là số số hạng, a là số hạng đầu tiên và l là số hạng cuối cùng. Trong trường hợp này, số hạng đầu tiên là 12, số hạng cuối cùng là 2002 và hiệu chung là 10.
Sử dụng công thức, chúng ta có thể tính tổng như sau: Sn = (n/2)(a + l) = (n/2)(12 + 2002) = (n/2)(2014) Bây giờ, chúng ta cần tìm giá trị của n, đại diện cho số số hạng trong chuỗi. Để làm điều này, chúng ta có thể sử dụng công thức cho số hạng thứ n của một chuỗi số học, đó là an = a + (n-1)d, trong đó an là số hạng thứ n, a là số hạng đầu tiên, n là số lượng số hạng , và d là sự khác biệt chung. Trong trường hợp này, chúng ta có: 2002 = 12 + (n-1)10 1990 = (n-1)10 199 = n-1 n = 200 Bây giờ chúng ta có thể thay thế các giá trị vào công thức tính tổng: Sn = (n/2)(2014) = (200/2)(2014) = 100(2014) = 201.400 Vậy tổng của dãy 12 + 22 + 32 + 42 + .... + 2002 là 201.400.
(1/49-1/32).(1/49-1/42).....(1/49-1/492)