Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PHAM THI THAO NGUYEN
Xem chi tiết
Nhók Me
26 tháng 10 2016 lúc 18:33

=1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015

Trừ tất cả ta được 1-1/2015=2014/2015

lê thế trung
26 tháng 10 2016 lúc 18:25

=1-1/2+1/2-1/3+1/3-1/4+.....+1/2014-1/2015

=1-1/2015=2014/2015

Nguyễn Linh Nhi
4 tháng 8 2017 lúc 14:30

=1-(1/2+1/2-1/3+1/3-1/4+...+1/2014-1/2015)

=1-1/2015                           

=2014/2015.   

Nếu đúng thì nhớ tíck cho mk nhé!!!Thanh you...

Anh Mai
Xem chi tiết
Nguyễn Thị Thùy Dương
22 tháng 11 2015 lúc 6:47

\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)x=\frac{1}{3}\left(2014.2015.2016-2013.2014.2015........+2.3.4-1.2.3+1.2.3-0.1.2\right)\)

\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)

\(x=\frac{1}{3.2029104}.2014^2.2015^2.2016=\)

\(\left(\frac{1}{2}-\frac{1}{2014.2015}\right)x=\frac{1}{3}.2014.2015.2016\)

trân huyền trang
22 tháng 11 2015 lúc 6:39

vào câu hỏi tương tự nha bạn

Earth-K-391
Xem chi tiết
Yeutoanhoc
25 tháng 5 2021 lúc 10:20

`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`

OH-YEAH^^
25 tháng 5 2021 lúc 10:22

A=4.(1/1.2+1/2.3+...+1/2014.2015)

A=4.(1-1/2+1/2-1/3+...+1/2014-1/2015)

A=4.(1-1/2015)

A=4.2014/2015

A=8056/2015

Giải:

\(A=\dfrac{4}{1.2}+\dfrac{4}{2.3}+\dfrac{4}{3.4}+...+\dfrac{4}{2014.2015}\) 

\(A=4.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\) 

\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\) 

\(A=4.\left(\dfrac{1}{1}-\dfrac{1}{2015}\right)\) 

\(A=4.\dfrac{2014}{2015}\) 

\(A=\dfrac{8056}{2015}\)

duphuongthao
Xem chi tiết
Ác Mộng
13 tháng 6 2015 lúc 17:10

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=\frac{49}{50}\)

Phạm Hoàng Hải
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 6 2020 lúc 11:46

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
1 tháng 6 2020 lúc 15:36

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Khách vãng lai đã xóa
hoang thi bich phuong
Xem chi tiết
Nguyễn Đức Mạnh
27 tháng 8 2017 lúc 10:40

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

Bastkoo
27 tháng 8 2017 lúc 11:10

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)

Taipro1984 Tai
3 tháng 5 2018 lúc 21:09

]\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Duong Thi Nhuong
Xem chi tiết
satoshi-gekkouga
Xem chi tiết
satoshi-gekkouga
29 tháng 6 2021 lúc 17:14

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Nguyễn Đức Chung
29 tháng 6 2021 lúc 17:19

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

Khách vãng lai đã xóa
dê gia
20 tháng 8 2024 lúc 8:41

con khỉ tao đéo b

 

online math
Xem chi tiết
Nguyễn Hưng Phát
13 tháng 2 2016 lúc 9:34

Làm tiếp

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)

A=\(1-\frac{1}{100}\)

A=\(\frac{100}{100}-\frac{1}{100}\)

A=\(\frac{99}{100}\)

Linh
13 tháng 2 2016 lúc 9:44

A= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +...+ 99-98/98.99 + 100-99/99.100

A= 2/1.2 - 1/1.2 + 3/2.3 - 2/2.3 + 4/3.4 - 3/3.4 +...+ 99/98.99 - 98/98.99 + 100/99.100 - 99/99.100

A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/98 - 1/99 + 1/99 - 1/100

A= 1 - 1/100

A= 99/100

Deucalion
13 tháng 2 2016 lúc 9:44

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

Ta có công thức: 

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)

Áp dụng công thưc trên ta có

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)