Giải hệ phương trình:
a+b=50%
a^2+b^2=14,5%
em cảm ơn ạ
giúp em với ạ, em cảm ơn. đây là giải hệ phương trình
a. 4x + 5y=9
2x-y=1
\(\left\{{}\begin{matrix}4x+5y=9\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=9\\10x-5y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14x=14\\4x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\4.1+5y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}4x^2-4xy+y^2=9\\x+3y=5\end{matrix}\right.\)
Em cảm ơn ạ !
Chào bạn!
Bạn phân tích cái đầu thành pt : 4x2 - 4xy +y2 = (2x-y)2=9Từ đó bạn tính được: 2x-y=3 hoặc 2x-y= -3 (1)(1) suy ra được 2x = 3+y hoặc 2x=y-3Sau đó bạn nhân 2 vế của pt 2 cho 2 ta sẽ được pt mới <=> 2x+6y = 10 (2)Tới đây bạn thay 2x vào pt (2) ( lưu ý là xét 2 TH)Cuối cùng bạn chỉ cần tìm được y sau đó suy ra x nữa là xog . <3
Giải dùm em hệ phương trình này với ạ!
em cảm ơn
Lấy \(2.\left(2\right)-\left(1\right)\) ta được:
\(2b+4a+6-\left(a-1-2b\right)=0\)
\(\Leftrightarrow4b+3a+7=0\Rightarrow b=\dfrac{-3a-7}{4}\)
Thế vào (2):
\(\sqrt{a^2+\left(\dfrac{-3a-7}{4}\right)^2}=\dfrac{-3a-7}{4}+2a+3\)
\(\Leftrightarrow\sqrt{25a^2+42a+49}=5a+5\) (\(a\ge-1\))
\(\Leftrightarrow25a^2+42a+49=25a^2+50a+25\)
\(\Rightarrow a=...\Rightarrow b=...\)
`2x+5y=11(1)`
`2x-3y=0(2)`
Lấy (1) trừ (2)
`=>8y=11`
`<=>y=11/8`
`<=>x=(3y)/2=33/16`
a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)
`b)4x+3y=6(1)`
`2x+y=4<=>4x+2y=8(2)`
Lấy (1) trừ (2) ta có:
`y=-2`
`<=>x=(4-2y)/2=3`
giải hệ phương trình sau: (lm chi tiết giúp mik vs cảm ơn )
{A + G =50%
A/G = 0,6
\(\left\{{}\begin{matrix}A+G=50\%\\\dfrac{A}{G}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+G=0,5\\\dfrac{A}{G}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+G=0,5\\A=0,6G\end{matrix}\right.\)
Thay \(A=0,6G\) vào ta có:
\(\Leftrightarrow\left\{{}\begin{matrix}0,6G+G=0,5\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1,6G=0,5\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=\dfrac{0,5}{1,6}\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=0,3125\\A=0,6\cdot0,3125\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=0,3125\\A=0,1875\end{matrix}\right.\)
Vậy: \(\left\{{}\begin{matrix}G=31,25\%\\A=18,75\%\end{matrix}\right.\)
mọi người lập bảng giải hộ em bằng hệ phương trình với ạ. E cần gấp, em cảm ơn
a) 1/4 - 3 (1/12 + 3/8 )
b) ( -2/3 + 3/5 ) : 1/50 - 30
mọi người giải giúp em vs ạ em cần gấp ạ. xin cảm ơn
a) \(\dfrac{1}{4}-3\left(\dfrac{1}{12}+\dfrac{3}{8}\right)=\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{9}{8}=-\dfrac{9}{8}\)
b) \(\left(-\dfrac{2}{3}+\dfrac{3}{5}\right):\dfrac{1}{50}-30=\left(-\dfrac{2}{3}+\dfrac{3}{5}\right).50-30=-\dfrac{100}{3}+30-30=-\dfrac{100}{3}\)
Giải giúp em với ạ:
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
a, giải hệ phương trình khi m = √2
b, giải và biện luận hệ phương trình theo m
Cô làm câu b thôi nhé :)
Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)
Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)
Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.
Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)
Từ đó : \(x=\frac{8-m}{2+m}\)
Kết luận:
+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
+ m = - 2, hệ phương trình vô nghiệm.
+ \(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)
Chúc em học tập tốt :)
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)
2.
ĐKXĐ: \(1\le x\le3\)
Pt tương đương:
\(-x^2+4x-3=2m+3x-x^2\)
\(\Leftrightarrow x=2m+3\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(1\le2m+3\le3\)
\(\Leftrightarrow-1\le m\le0\)
\(\Rightarrow a^2+b^2=1\)