phân tích thành nhân tử (đoán nghiệm)
x4+4x2+4x+1
Phân tích đa thức thành nhân tử bằng phối hợp nhiều phương pháp
a) x4-4x2-4x-1
b) 10x4y2-10x3y2-10x2y2+10xy2
a) \(x^4-4x^2-4x-1=\left(x^4-1\right)-4x\left(x+1\right)=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-4x\left(x+1\right)=\left(x+1\right)\left[\left(x^2+1\right)\left(x-1\right)-4x\right]=\left(x+1\right)\left(x^3-x^2+x-1-4x\right)=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)
b) \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2=10xy^2\left(x^3-x^2-x+1\right)=10xy^2\left(x-1\right)^2\left(x+1\right)\)
a: \(x^4-4x^2-4x-1\)
\(=\left(x^4-1\right)-4x\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-4x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-x^2-1-4x\right)\)
\(=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)
b: \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2\)
\(=10xy^2\left(x^3-x^2-x+1\right)\)
\(=10xy^2\cdot\left[\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\right]\)
\(=10xy^2\cdot\left(x+1\right)\left(x-1\right)^2\)
x4 -2x3 -4x2 + 4x-3 phân tichs đa thức thành nhân tử
\(=x^4-3x^3+x^3-3x^2-x^2+3x+x-3\)
\(=\left(x-3\right)\left(x^3+x^2-x+1\right)\)
Bài 2: Phân tích các đa thức sau thành nhân tử
a) x2 – 9 b) 4x2 -1 c) x4 - 16
d) x2 – 4x + 4 e) x3 – 8 f) x3 + 3x2 + 3x + 1
a) x² - 9
= x² - 3²
= (x - 3)(x + 3)
b) 4x² - 1
= (2x)² - 1²
= (2x - 1)(2x + 1)
c) x⁴ - 16
= (x²)² - 4²
= (x² - 4)(x² + 4)
= (x² - 2²)(x² + 4)
= (x - 2)(x + 2)(x + 4)
d) x² - 4x + 4
= x² - 2.x.2 + 2²
= (x - 2)²
e) x³ - 8
= x³ - 2³
= (x - 2)(x² + 2x + 4)
f) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
Bài 2 Phân tích đa thức sau thành nhân tử
a. x4 + 2x3 − 4x − 4
b. x2(1 − x2) − 4 − 4x2
c. x2 + y2 − x2y2 + xy − x − y
d* a3 + b3 + c3 − 3abc
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Phân tích đa thức thành nhân tử:
a) 50x5-8x3
b) x4-5x2-4y2+10y
c) 36a2-b2+12a+1
d) x3+y3-xy2-x2y
e) 4x2+4x-3
f) 9x4+16x2-4
g) -6x2+5xy+4y2
h)(x2+4x)2+8(x2+4x)+15
i) 9x4+5x2+1
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
Phân tích đa thức thành nhân tử (tách 1 hạng tử thành nhiều hạng tử)
a) a4 + a2 + 11
b) a4 + a2 - 22
c) x4 + 4x2 - 5
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
Nếu sửa như bạn nói thì làm như sau:
a.
$a^4+a^2+1=(a^2+2a^2+1)-a^2=(a^2+1)^2-a^2=(a^2+1-a)(a^2+1+a)$
b.
$a^4+a^2-2=(a^4-1)+(a^2-1)=(a^2-1)(a^2+1)+(a^2-1)$
$=(a^2-1)(a^2+1+1)=(a-1)(a+1)(a^2+2)$
phân tích đa thức: x4 + 2x3 + 4x2 + 3x + 2 thành nhân tử
Ta có:
\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)
\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)
\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)
phân tích đa thức thành nhân tử
a) x2- x- y2- y
b) x2- 2xy- y2-z2
c) 5x- 5y+ 4x- ay
d) 3x3- x2-21x+ 7
e) x3- 4x2- 8x- 8
f) x3- 5x2- 5x+ 1
g) x2y- xz+ z- y
h) x4- x3+ x2- 1
i) x4- x2+ 10x- 25
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)
Bài 1: Phân tích đa thức sau thành nhân tử:
1)x3 + 2x2 - 6x - 27
2)12x3 + 4x2 - 27x - 9
3)x4 - 25x2 + 20x - 4
PHÂN TÍCH CÁC ĐA THỨC SAU THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM NHIỀU HẠNG TỬ :
a) x2 -2x -4y2-4y
b) x4 + 2x3 - 4x -4
c) x3 + 2x2y -x -2y
d) 3x2 -3y2 -2(x-y)2
e) x3 -4x2 -9x +36
f) x2 -y2 -2x -2y
a: Ta có: \(x^2-4y^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c: Ta có: \(x^3+2x^2y-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
e: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
f: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)