Cho biểu thức \(B=\frac{\sqrt{a}}{\sqrt{a}-3}-\frac{3}{\sqrt{a}+3}-\frac{a-2}{a-9}\) với \(a\ge0;a\ne9\)
a) Rút gọn B
b) Tìm các số nguyên a để B nhận giá trị nguyên
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\), với \(x\ge0\), \(x\ne9\)
a) Rút gọn biểu thức A. Tìm x để A = \(\frac{1}{3}\)
b) Tìm GTLN của biểu thức A
Cho biểu thức : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)với \(x\ge0;x\ne9\). Tìm giá trị lớn nhất của biểu thức A.
Cho biểu thức
A = \(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\left(x\ge0\right),x\ne9\)
a) Rứt gọn biểu thức
a) \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
Cho hai biểu thức: \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\); \(B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(x\ge0;x\ne9\)
a) Tính giá trị của biểu thức B tại x=25
b) Rút gọn biểu thức A
c) Tìm giá trị nhỏ nhất của biểu thức: P=A.B+1
a, - Thay x = 25 vào biểu thức B ta được :
\(B=\frac{\sqrt{25}-3}{\sqrt{25}+1}=\frac{1}{3}\)
b, Ta có : \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
=> \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}\)
=> \(A=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
=> \(A=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{x-9}\)
=> \(A=\frac{2x-6\sqrt{x}+x+\sqrt{x}+3\sqrt{x}+3+11\sqrt{x}-3}{x-9}\)
=> \(A=\frac{3x+9\sqrt{x}}{x-9}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
c, Ta có : \(P=AB+1=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+1\)
=> \(P=\frac{3\sqrt{x}}{\sqrt{x}+1}+1\)
=> \(P=\frac{3\sqrt{x}+3-3}{\sqrt{x}+1}+1\)
=> \(P=4-\frac{3}{\sqrt{x}+1}\)
Ta thấy : \(\sqrt{x}\ge0\)
=> \(4-\frac{3}{\sqrt{x}+1}\ge1\)
Vậy MinP = 1 khi x = 0
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
với \(x\ge0,x\ne9\)
a, rút gọn A
b, tìm x để \(A=\frac{1}{3}\)
c,tìm GTLN của A
a) \(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3}{\sqrt{x}+3}\)
b) \(A=\frac{1}{3}=>\frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(=>\sqrt{x}+3=9\)
\(=>\sqrt{x}=6=>x=36\)
c) \(A\)\(lớn\)\(nhất\)\(< =>\frac{3}{\sqrt{x}+3}lớn\)\(nhất\)
\(=>\sqrt{x}+3\)\(nhỏ\)\(nhất\)
\(Mà\)\(\sqrt{x}+3>=3
\)
\(Do\)\(đó\)\(\sqrt{x}+3=3=>x=0\)
Giúp mình với
Cho hai biểu thức: \(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)và \(B=\frac{\sqrt{x}+5}{\sqrt{x}-3}\)với \(x\ge0;x\ne9\)
1) Tính giá trị của biểu thức B khi x\(=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
2) Rút gọn biểu thức \(P=\frac{A}{B}\)
a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)
Thay x = 4 => \(\sqrt{x}=2\) vào B ta được :
\(B=\frac{2+5}{2-3}=-7\)
b, Ta có : Với \(x\ge0;x\ne9\)
\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)
Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
Cho biểu thức: \(C=\left(\frac{2+\sqrt{a}}{2-\sqrt{a}}-\frac{2-\sqrt{a}}{2+\sqrt{a}}-\frac{4a}{a-4}\right):\left(\frac{2}{2-\sqrt{a}}-\frac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
Chứng minh \(B\ge0\)
B đâu ra chỉ? Không biết đề có sai không chứ mình rút gọn ra nhiêu đây thì ko đủ chứng minh C\(\ge0\) được
Cho hai biểu thức \(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)và \(B=\frac{\sqrt{x}+5}{\sqrt{x}-3}\)với \(\left(x\ge0;x\ne9\right)\)
a. Rg A
b. Cho \(P=\frac{A}{B}\)Tìm x để \(\sqrt{P}< \frac{1}{3}\)
a) \(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{4\sqrt{x}-12}{x-9}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{x+3\sqrt{x}}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}\)
\(=\frac{x-25}{x-9}\)
b) \(P=\frac{A}{B}=\frac{\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}\)
\(=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(\sqrt{P}< \frac{1}{3}\Rightarrow\sqrt{\frac{\sqrt{x}-5}{\sqrt{x}+3}}< \frac{1}{3}\)
\(\Rightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}< \frac{1}{9}\Leftrightarrow9\sqrt{x}-45< \sqrt{x}+3\)
\(\Leftrightarrow8\sqrt{x}< 48\Leftrightarrow\sqrt{x}< 6\Rightarrow0\le x< 36\)
\(a,\)\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(b,P=\frac{A}{B}=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+5}{\sqrt{x}-3}\)
\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\left(\sqrt{x}-3\right)}{\sqrt{x}+5}=\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}\)
Để \(\sqrt{P}< \frac{1}{3}\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}< \frac{1}{3}\)
\(\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}-\frac{1}{3}< 0\)
\(\Rightarrow\frac{3\left(2x+3\sqrt{x}-1\right)-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)
\(\Rightarrow6x+9\sqrt{x}-3-\sqrt{x}-5< 0\)( do \(3\left(\sqrt{x}+5\right)>0\))
\(\Rightarrow6x-8\sqrt{x}-8< 0\Rightarrow3x-4\sqrt{x}-4< 0\)
\(\Rightarrow3x-6\sqrt{x}+2\sqrt{x}-4< 0\)
\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-2\right)+2\left(\sqrt{x}-2\right)< 0\)
\(\Rightarrow\left(\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)< 0\)
Vì \(3\sqrt{x}+2>0\Rightarrow\sqrt{x}-2< 0\)
\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
Vậy để \(\sqrt{P}< \frac{1}{3}\)thì \(0\le x< 4\)
Cho hai biểu thức \(A=\frac{x-9}{\sqrt{x}-3}\) và \(B=\frac{3}{\sqrt{x}-3}+\frac{2}{\sqrt{x+3}}+\frac{x-5\sqrt{x}-3}{x-9}\)với \(x\ge0,x\ne9\)
c) Với x > 9, tìm giá trị nhỏ nhất của biểu thức P= A.B