Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Tiến Nhật

Cho hai biểu thức: \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\); \(B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(x\ge0;x\ne9\)

a) Tính giá trị của biểu thức B tại x=25

b) Rút gọn biểu thức A

c) Tìm giá trị nhỏ nhất của biểu thức: P=A.B+1

💋Amanda💋
26 tháng 3 2020 lúc 15:13
https://i.imgur.com/Vi0c33D.jpg
Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
26 tháng 3 2020 lúc 15:21

a, - Thay x = 25 vào biểu thức B ta được :

\(B=\frac{\sqrt{25}-3}{\sqrt{25}+1}=\frac{1}{3}\)

b, Ta có : \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)

=> ​​\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}\)

=> \(A=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

=> \(A=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{x-9}\)

=> \(A=\frac{2x-6\sqrt{x}+x+\sqrt{x}+3\sqrt{x}+3+11\sqrt{x}-3}{x-9}\)

=> \(A=\frac{3x+9\sqrt{x}}{x-9}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

c, Ta có : \(P=AB+1=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+1\)

=> \(P=\frac{3\sqrt{x}}{\sqrt{x}+1}+1\)

=> \(P=\frac{3\sqrt{x}+3-3}{\sqrt{x}+1}+1\)

=> \(P=4-\frac{3}{\sqrt{x}+1}\)

Ta thấy : \(\sqrt{x}\ge0\)

=> \(4-\frac{3}{\sqrt{x}+1}\ge1\)

Vậy MinP = 1 khi x = 0

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Thu Hằng
Xem chi tiết
Big City Boy
Xem chi tiết
Anh Mai
Xem chi tiết
Vampire
Xem chi tiết
boy lạnh lùng
Xem chi tiết
Tsukino Usagi
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết