Cho hai biểu thức \(A=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\) và \(B=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\) với \(x\ge0\) và \(x\ne4\)
1) Tính giá trị của A khi \(x=4-2\sqrt{3}\)
2) Tìm giá trị của x để B=A+1
3) Tìm giá trị nhỏ nhất của biểu thức C=B-A
Cho hai biểu thức: \(A=\dfrac{\sqrt{x}-3}{2\sqrt{x}+6}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\) với \(x\ge0;x\ne4;x\ne9\). Với x là số tự nhiên thỏa mãn: x>3, tìm giá trị lớn nhất của biểu thức \(P=\dfrac{B}{A}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
cho A = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2x}\) và B = \(\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}\)
a, tính giá trị của biểu thức A khi x = 36
b, rút gọn biểu thức P = B : A
Cho hai biểu thức: \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\); \(B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(x\ge0;x\ne9\)
a) Tính giá trị của biểu thức B tại x=25
b) Rút gọn biểu thức A
c) Tìm giá trị nhỏ nhất của biểu thức: P=A.B+1
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
Cho biểu thức :\(A=\frac{\sqrt{x}}{1+\sqrt{x}}\) và \(B=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với \(x\ge0;x\ne9;x\ne4\) )
1, Tính giá trị biểu thức A khi \(x=3-2\sqrt{2}\)
2, Rút gọn biểu thức B
3, Tìm giá trị nhỏ nhất của biểu thức P=A:B
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Dạng 1: Tính giá trị biểu thức [Rút gọn biểu thức rồi thay số (nếu đc)]
1) Tính giá trị biểu thức B = \(\sqrt{x-1+2\sqrt[3]{x\sqrt{x}+3x+3\sqrt{x}+1}}\), vs x = 5
2) Tính giá trị biểu thức C = \(\sqrt{2x-1+2\sqrt{x^2-x}+\sqrt{2x-1-2\sqrt{x^2-x}}}\), vs x = 4
3) Tính giá trị biểu thức D = \(\frac{\sqrt[3]{x\sqrt{x}\left(3x+1\right)+x^2\left(3+x\right)}}{\sqrt{x}+1}-\sqrt{x}\), vs x = 10
4) Tính giá trị biểu thức E = \(\sqrt{\sqrt[4]{x}+1-2\sqrt[8]{x}+1}\), vs x = 256
5) Cho x = \(\frac{\left(\sqrt{5}+2\right)\sqrt{3\sqrt{5}-6}}{\sqrt{4+\sqrt{9-4\sqrt{5}}}}\), tính giá trị biểu thức A = \(\left(x^4-5x^2+5\right)^{2014}\)