Góc EBA = 50độ . Góc C = 40 độ . Chứng tỏ : a. AD // CM b. AD // BE
Cho góc xOy=50độ trên ta Ox lấy 2 điểm A và B sao cho OA<OB trên tia Oy lấy 2 diểm C và D sao cho OC=OA,OD=OB
a, Chứng minh AD=BC
b,Cho góc OBC =30 độ giao điểm của AD và BC là I Tính số đo góc BID
c, Chứng minh OI vuông góc với BD
Cho hình bình hành ABCD (AB>AD, góc A>90 độ) . Trên tia đối của tia CD lấy điểm E sao cho góc DBC = góc CBE. Đường thẳng BE cắt đường thẳng AD tại M. Đường thẳng CM cắt AB tại F, BD tại K . Chứng minh rằng a, CK^2=KF.KM b, 1/CK=1/CF+1/CM c, BF/FA=BE/BD
help me thanks
a.- Xét △KDC có:
DC//BF (ABCD là hình bình hành).
=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)
- Xét △KDM có:
MD//BD (ABCD là hình bình hành).
=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)
- Từ (1) và (2) suy ra:
\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)
b. - Xét △KDC có:
DC//BF (ABCD là hình bình hành).
=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)
- Xét △KDM có:
MD//BD (ABCD là hình bình hành).
=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)
- Từ (3) và (4) suy ra: \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)
=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).
=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)
=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)
=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)
c.
Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE
Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)
Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet: \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)
Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)
\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)
(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)
d.
Do \(BI\perp BC\), mà BC là đường phân giác trong nên BC là phân giác ngoài góc \(\widehat{DBE}\) của tam giác BDE
Theo định lý phân giác: \(\dfrac{IE}{ID}=\dfrac{BE}{BD}\)
Theo câu c ta có \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\)
\(\Rightarrow\dfrac{IE}{ID}=\dfrac{CE}{CD}\Rightarrow IE.CD=ID.CE\)
Cho tam giác ABC, góc B tù. Từ trung điểm M của BC vẽ đường vuông góc với tia phân giác của góc A tại D, đường này cắt tia AB tại E và tia AC tại F. Từ M vẽ MI vuông góc với AB, MH vuông góc với AC, đường MH cắt tia AD tại N
a) chứng minh BE = CF
b) CM : ME là phân giác góc IMN
c) Tia phân giác góc IMN cắt AC tại K. Chứng minh MK//AD
d) CM : góc MKC = góc EMN
e) Cho góc BAC = 60 độ, AB = c, AC = b. Tính AE, BE AD theo b,c
Cho hình vẽ 1, biết góc BAC + ACD=180 độ, góc ADC=40 độ, góc BAC=130 độ. Chứng tỏ: AD vuông góc AC
nè tớ thấy hơi sai sai:
BAC+ACD=180 ĐỘ MÀ SAO ADC=40 ĐỘ?
Tam giác ABC có góc A bằng 30 độ, góc B bằng 40 độ Tia phân giác góc BAC cắt BC tại D. ĐƯờng vuông góc với AD tại A cắt BC ở E. Chứng minh AB+AC=BE
cho hình bên,biết:
AB vuông góc với AC, DAC=40°, B=50°,C=40°
a) chứng tỏ AD//CF
b) AD//BF
Cho tam giác ABC có góc ACB=40 độ, đường cao AH. Tia phân giác của góc HAC cắt BC tại D. Kẻ Dk vuông góc với AC(k thuộc AC).
a, CM: tam giác AHD= tam giác AKD.
b, CM: AD vuông góc với HK.
c, Qua điểm C kẻ đường vuông góc với tia AD tai E. Chứng minh rằng các đường AH, KD, CE đồng qui.
d, CM: KC<KA.
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: AH=AK
DH=DK
=>AD là trung trực của HK
c: Gọi M là giao của DK với AH
Xét ΔAMC có
MK,CH là đường cao
MK cắt CH tại D
=>D là trực tâm
=>AD vuông góc MC
mà AD vuông góc CE
nên C,M,E thẳng hàng
=>AH,KD,CE đồng quy tại M
Cho \(\Delta\) ABC, kẻ AD vuông góc BC, BE vuông góc AC
a)Cm CI vuông góc AB
b) Cho góc ACB= 40 độ. Tính số đo góc BID và góc DIE
Cho tam giác ABC vuông tại A có góc B = 2 góc C, đường cao AD.
a) CM: tam giác ADB đồng dạng tam giác ABC
b) Kẻ tia phân giác của góc ABC cắt AD tại F và cắt AC tại E. CM: AB^2=AE*AC
c) chứng tỏ DF/Fa = AE/EC
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
cho tam giác abc phân giác ab phân giác ad Phân giác của góc bac cắt bc tại d qua b kẻ đương thẳng song song với ad cắt ac tại e
1) cmr góc eba = aeb
2) qua a kẻ đường thẳng vuông góc với ad cắt be tại f cmr af là tia phân giác của baf và af vuông góc với be