\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)}^2\)
giúp với ạ doạn cuối kolamf ra
f)\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)- \(\dfrac{\sqrt{6}-3}{\sqrt{2}-\sqrt{3}}\)
g)\(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0,4}\right)\)
giải chi tiết cụ thể giúp mk với ạ
\(\sqrt{\left(3-2\sqrt{5}\right)}^2+\sqrt{\left(5-2\sqrt{5}\right)^2}\)
\(\dfrac{2}{\sqrt{3}+1}-\dfrac{2}{\sqrt{3}-1}\)
\(\sqrt{7+2}\sqrt{10}-\sqrt{7-2\sqrt{10}}\)
giúp mk với ạ
1) \(=2\sqrt{5}-3+5-2\sqrt{5}=2\)
2) \(=\dfrac{2\sqrt{3}-2-2\sqrt{3}-2}{3-1}=\dfrac{-4}{2}=-2\)
3) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)
Tính A=\(\left(x^3+6x-5\right)^{2009}\) biết \(x=\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\)
Giúp em với ạ, em cảm ơn ạ.
\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)
\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)
\(x^3=\)
\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)
\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)
\(x^3=4-3.2x\)
\(x^3=4-6x\)
thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)
Rút gọn:
1) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
2) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6}-2\sqrt{10}}\)
Giúp em với ạ. Help mee !!!
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
Câu 1 :Tính :
\(a,\sqrt{2}.\sqrt{2-\sqrt{3}}.\left(\sqrt{3}+1\right)\)
\(b,\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
Giúp em với ạ ^^!!!
a) \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
b) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}\right)\cdot\left(\sqrt{2}\cdot\sqrt{2+\sqrt{3}}\right)\cdot\left(\sqrt{3}-1\right)\)
\(=\left(4-3\right)\cdot\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Mọi người giúp gấp với ạ.
\(\dfrac{2\left(\sqrt{2}-\sqrt{6}\right)}{3\sqrt{2-\sqrt{3}}}\)
giúp em với mọi người em cảm ơn ạ
\(\dfrac{2\left(\sqrt{2}-\sqrt{6}\right)}{3\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{2}\left(1-\sqrt{3}\right)}{3\cdot\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{4\left(1-\sqrt{3}\right)}{3\cdot\sqrt{4-2\sqrt{3}}}\)
\(=\dfrac{-4\left(\sqrt{3}-1\right)}{3\cdot\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{-4\left(\sqrt{3}-1\right)}{3\cdot\left(\sqrt{3}-1\right)}=-\dfrac{4}{3}\)
thực hiện phép tính :
G=\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
mn ơi giúp mik vs ạ !!
Cho \(x=\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}+\sqrt[3]{3-2\sqrt{2}}\)
Tính \(P=\left(2x^3-6x+2008\right)^{2020}\)
Giúp với ạ
Đề bài không chính xác rồi em
Muốn khử được căn ba thì trong biểu thức \(\left(2x^2-6x+2008\right)^{...}\) phải có bậc 3, mà ở đây chỉ có bậc 2
\(x=\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\)
\(x^3=6+3\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\)
\(x^3=6+3x\)
\(x^3-3x=6\)
\(P=\left[2\left(x^3-3x\right)+2008\right]^{2020}=\left(2.6+2008\right)^{2020}=2020^{2020}\)