Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:53

a.

\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)

Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:

\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)

\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)

\(\Leftrightarrow x+1=y\)

\(\Leftrightarrow\left(x+1\right)^3=y^3\)

\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)

\(\Leftrightarrow x^3+3x^2-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 23:02

b.

\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:

\(a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)

\(\Leftrightarrow8x^3-6x-1=0\)

Đặt \(f\left(x\right)=8x^3-6x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm

\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)

\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)

\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)

Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)

Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)

Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)

\(\Rightarrow8cos^3u-6cosu-1=0\)

\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)

\(\Leftrightarrow2cos3u=1\)

\(\Leftrightarrow cos3u=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)

 

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 15:46

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 15:47

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

phan tuấn anh
Xem chi tiết
Tuấn
9 tháng 10 2016 lúc 20:22

DKXD :\(x\ge-1\)
Đặt : \(\sqrt{x+1}=a\left(a\ge0\right)\Rightarrow\hept{\begin{cases}3x^2-8x-3=4xa\\a^2=x+1\end{cases}}\)
\(\Rightarrow3x^2-8x-3-4a^2=4xa-4a-4\Leftrightarrow4a^2+4xa+x^2=4x^2-4x+1\)
\(\Leftrightarrow\left(2a+x\right)^2=\left(2x-1\right)^2\)
+> \(2a+x=2x-1\Leftrightarrow2\sqrt{x+1}=x-1\Rightarrow4x+4=x^2-2x+1\left(x\ge1\right)\)
\(\Leftrightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3+2\sqrt{3}\left(tm\right)\\3-2\sqrt{3}\left(ktm\right)\end{cases}}\)
+> \(2a+x=1-2x\Leftrightarrow2\sqrt{x+1}=1-3x\Rightarrow4x+4=9x^2-6x+1\left(x\le\frac{1}{3}\right)\)
\(\Leftrightarrow9x^2-10x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+2\sqrt{13}}{9}\left(ktm\right)\\x=\frac{5-2\sqrt{13}}{9}\left(tm\right)\end{cases}}\)
Thử lại 
Vậy :

phan tuấn anh
9 tháng 10 2016 lúc 20:36

thank nha tuấn

Tuấn
9 tháng 10 2016 lúc 21:05

ừ không có bác :))

Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Trang Nguyễn
Xem chi tiết
ILoveMath
1 tháng 12 2021 lúc 21:49

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

Trần Thị Hà Phương
Xem chi tiết
Phạm Thị Lý
Xem chi tiết