Tìm x để biểu thức sau có nghĩa:
c) \(\dfrac{1}{\sqrt{4x^2-12x+9}}\)
d) \(\dfrac{1}{\sqrt{x^2-x+1}}\)
e) \(\dfrac{1}{\sqrt{x^2-8x+15}}\)
f) \(\dfrac{1}{\sqrt{3x^2-7x+20}}\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
Giải các pt sau:
a)\(\left|3x+1\right|=\left|x+1\right|\)
b)\(\left|x^2-3\right|=\left|x-\sqrt{3}\right|\)
c)\(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)
d)\(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
f)\(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
g) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
h) \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)
Mọi người giúp em gấp với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Với giá trị nào của x thì các căn thức trên có nghĩa :
a)\(\sqrt{3x^2+1}\)
b)\(\sqrt{4x^2-4x+1}\)
c)\(\sqrt{\dfrac{3}{x+4}}\)
h)\(\sqrt{x^2-4}\)
i) \(\sqrt{\dfrac{2+x}{5-x}}\)
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
Tìm điều kiện có nghĩa của các căn thức sau:
a) \(\sqrt{3x-2}\) b) \(\sqrt{4-2x}\) c) \(\sqrt{-4x}\)
d)\(\sqrt{x^2-2x+1}\) e) \(\sqrt{\dfrac{x^2+1}{3-2x}}\) f) \(\sqrt{-15+8x-x^2}\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
Rút gọn các biểu thức sau:
a) \(\sqrt{\dfrac{16(4x-4\sqrt{x}+1)}{6x+3\sqrt{x}}}\) với \(x > 1\)
b) \(\dfrac{\sqrt{(x)^{2}}+\sqrt{4-4x+(x)^{2}}+1}{2x-1}\) với \(x > 2\sqrt{2}\)
c) \(\sqrt{(x)^{2}-8x+16}+\sqrt{36-12x+(x)^{2}}\) với \(4< x <6\)
giải phương trình
1/\(\sqrt{x^2}-4x+8\) +\(\sqrt{x^2-4x+13}=17-2x^2+8x\)
2/\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x-24}=4-2x-x^2\)