Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Bảo
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 18:15

Lời giải:

BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$

Áp dụng BĐT AM-GM:

$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$

$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên: 

$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$

$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)

Ta có đpcm.

Đồ Ngốc
Xem chi tiết
nguyễn thanh huyền
Xem chi tiết
Yeutoanhoc
22 tháng 5 2021 lúc 20:49

`1/a^2+1/b^2+1/c^2<=(a+b+c)/(abc)`
`<=>1/a^2+1/b^2+1/c^2<=1/(ab)+1/(bc)+1/(ca)`
`<=>2/a^2+2/b^2+2/c^2<=2/(ab)+2/(bc)+2/(ca)`
`<=>1/a^2-2/(ab)+1/b^2+1/b^2-2/(bc)+1/c^2+1/c^2-2/(ac)+1/a^2<=0`
`<=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2<=0`
Mà `(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2>=0`
`=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2=0`
`<=>1/a=1/b=1/c`
`<=>a=b=c`
`=>` tam giác này là tam giác đều
`=>hata=hatb=hatc=60^o`

Lê Thị Thục Hiền
22 tháng 5 2021 lúc 20:50

Áp dụng bđt cosi với hai số dương:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)     ; \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc}\)      ; \(\dfrac{1}{a^2}+\dfrac{1}{c^2}\ge\dfrac{2}{ac}\)

\(\Rightarrow2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)  (*)

Theo giả thiết có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}\)  (2*)

Từ (*), (2*) ,dấu = xảy ra \(\Leftrightarrow a=b=c\)

=> Tam giác chứa ba cạnh a,b,c thỏa mãn gt là tam giác đều

=> Số đo các góc là 60 độ

 

Nguyễn Phương Quỳnh Chi
Xem chi tiết
nguyễn văn tâm
Xem chi tiết
Thắng Nguyễn
5 tháng 1 2017 lúc 13:01

Bài 1 Câu hỏi của Trịnh Xuân Diện - Toán lớp 8 - Học toán với OnlineMath y hệt rút 2 ở tử ở VT chia cho VP là thành đề này

Big City Boy
Xem chi tiết
nguyen khanh ly
Xem chi tiết
Phước Nguyễn
10 tháng 1 2016 lúc 22:08

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)

\(\Leftrightarrow\)  \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)

\(\Leftrightarrow\)  \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)

\(\Leftrightarrow\)  \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)

\(\Leftrightarrow\)  \(a-b=c-b=c-a\)  \(\Leftrightarrow\)  \(a=b=c\)  

Với   \(a,b,c\)   là  \(3\)  cạnh của \(\Delta ABC\)  thì  \(\Delta ABC\)  đều

Danh Danh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 20:51

Gọi p là nửa chu vi tam giác đó \(\Rightarrow p=\frac{a+b+c}{2}\) 

Ta có : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}=\frac{2}{p-a}+\frac{2}{p-b}+\frac{2}{p-c}\)

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)được : 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự : \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) ; \(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

Cộng các bất đẳng thức trên theo vế : \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Nguyễn Phương Thảo
Xem chi tiết
Thanh Tùng DZ
28 tháng 4 2020 lúc 9:15

Ta có a + b > c ; b + c > a ; a + c > b

\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

Vậy ...

Khách vãng lai đã xóa