Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Phạm
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 8:48

\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)

\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)

Thay \(x=3\)

\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)

Vậy \(a=-12\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2017 lúc 8:33

a) Đây là phép chia ết với đa thức thương  x 2  + 2x + 1.

Có thể kiểm tra lại kết quả bằng cách thực hiện nhân hai đa thức (x – 3)( x 2  + 2x +1)

b) Đa thức thương  x 2  – 5.

trung hải cấn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2018 lúc 11:49

Hay  a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .

Vy trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 13:50

\(f\left(x\right)⋮g\left(x\right)\)

\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)

\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)

Trần Hương Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 15:03

\(A=5x^3-7x^2+3x^3-4x^2+x^2-x^3+5x-1=7x^3-10x^2+5x-1\)

\(B=5x^3+3x^2-7x^4-5x^3+4x^2-x^4+3=-8x^4+7x^2+3\)

Nguyễn Huy Tú
5 tháng 3 2022 lúc 15:04

\(A=7x^3-10x^2+5x-1\)

\(B=-8x^4+7x^2+3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2017 lúc 11:17

Tung Eiji Akaso
Xem chi tiết
Lê Thị Thục Hiền
22 tháng 8 2019 lúc 22:27

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Phạm Nguyễn Thảo Vy
Xem chi tiết
ILoveMath
16 tháng 11 2021 lúc 10:34

A

Minh Lê
Xem chi tiết
RashFord:)
1 tháng 5 2022 lúc 19:34

\(âP\left(x\right)=13x^3+4x^2-11x-2\)

\(b.Q\left(x\right)=x^3+9x-5\)
\(c.A\left(x\right)=14x^3-x^2+10x+14\)
\(d.B\left(x\right)=2x^2+x+3\)