x4 - 3x3 + 6x2 - 5x + 3 = (x2 + ax +1)(x2 + bx + 3). Tìm a+b.
Giup mình với
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=x3-3x2-ax+3;B=x-1
2)A=3x3-16x2+25x+a;B=x2-4x+3
3)A=x4-x3+6x2-x+a;B=x2-x+5
\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)
\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)
Thay \(x=3\)
\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)
Vậy \(a=-12\)
Thực hiện phép chia:
a) ( x 3 - x 2 - 5x - 3) : (x - 3);
b) ( x 4 + x 3 - 6 x 2 -5x + 5) : ( x 2 + x - 1).
a) Đây là phép chia ết với đa thức thương x 2 + 2x + 1.
Có thể kiểm tra lại kết quả bằng cách thực hiện nhân hai đa thức (x – 3)( x 2 + 2x +1)
b) Đa thức thương x 2 – 5.
tìm a,b để đa thức : x4 + 3x3 - 17x2 + ax + b chia cho đa thức x2 - 1 dư 2x - 3
Tìm a và b để đa thức A chia hết cho đa thức B với:
a) A = x 4 - x 3 + 6 x 2 - x + a và B = x 2 - x + 5;
b) A = x 4 - 9 x 3 + 21 x 2 +ax + b và B = x 2 - x - 2.
Hay a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .
mình cần gấpppppppppppppppppppppp, giúp với ạ
Bài 3. Tìm giá trị của a, b để đa thức f(x) chia hết cho đa thức g(x) với
f(x) = x4− 3x3+ 3x2+ ax + b; g(x) = x2− 3x + 4.
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
A=5x3-7x2-(-3x3+4x2)+(x2-x3+5x-1)
B=(3x2+5x3-7x4)-(5x3-4x2+x4-3)
\(A=5x^3-7x^2+3x^3-4x^2+x^2-x^3+5x-1=7x^3-10x^2+5x-1\)
\(B=5x^3+3x^2-7x^4-5x^3+4x^2-x^4+3=-8x^4+7x^2+3\)
\(A=7x^3-10x^2+5x-1\)
\(B=-8x^4+7x^2+3\)
Tìm a và b để đa thức A chia hết cho đa thức B với:
a) A = 4 x 3 + 15 x 2 + 24x + 3 + a và B = x 2 + 4x + 7;
b) A = x 4 + 3 x 3 - x 2 + (2a - 3)x + 3b + a và B = x 2 + 3x - 1.
Giải pt
a. X4-4x3-6x2 -4x+1=0
b 4x2 +1/x2+7=8x+4/x
C 2x4+3x3 -16x2 +3x +2=0
a, \(x^4-4x^3-6x^2-4x+1=0\)(*)
<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)
<=> \(\left(x^2-2x+1\right)^2=12x^2\)
<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)
Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)
<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)
=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)
<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)
<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm
Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
BIết x4+x2+1-(x2+ax+1)(x2+bx+1). Tính T-a+b+ab
A.T=-1
B.1
C.5
D.6
Bài 1. Thu gọn, sắp xếp các hạng tử của đa thức theo luỹ thừa giảm dần của biến x
a/ P(x) = 4x2 - 6x + 13x3 - 2 - 5x + 8x2
b/ Q(x) = 5x + 4x3 - (x2 - 4x + 3x3) + x2 - 5
c/ A(x) = 14 + ( -6x2 + 32 x) - ( - 5x2 – 14x3 + 22x)
d/ B(x) =2.(5x - x2) - (- 4x2 + 9x - 3)
\(âP\left(x\right)=13x^3+4x^2-11x-2\)
\(b.Q\left(x\right)=x^3+9x-5\)
\(c.A\left(x\right)=14x^3-x^2+10x+14\)
\(d.B\left(x\right)=2x^2+x+3\)