Cho tỉ lệ thức \(\dfrac{3.x-y}{x+y}=\dfrac{3}{4}\). Tìm giá trị của tỉ số \(\dfrac{x}{y}\)
Cho tỉ lệ thức : \(\dfrac{x}{y}\) = \(\dfrac{2}{3}\). Tính giá trị của các biểu thức :
A = \(\dfrac{3x+5y}{7x-2y}\)
B = \(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
Cho tỉ lệ thức \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\). Tìm giá trị của tỉ số \(\dfrac{x}{y}\)
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-4y-3y=3x\)
\(\Rightarrow12x-7y=3x\)
\(\Rightarrow12x-3x=7y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{9}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Cho bt x và y là hai đại lượng tỉ lệ nghịch vs nhau và khi x= 3 thì y = \(\dfrac{16}{3}\).t Tìm hệ số tỉ lệ và tính giá trị của y khi x = 4.
cho tỉ lệ thức
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\) tìm giá trị của tỉ số \(\dfrac{x}{y}\)
Ta có:
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Vậy.........
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\Rightarrow\left(3x-y\right).4=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\)\(\dfrac{x}{y}=\dfrac{7}{9}\)
cho x1;x2 là các giá trị của x;y1;y2 là giá trị tương ứng của y
A) biết x;y tỉ lệ thuận và x1=2;x2=3;y1=\(\dfrac{1}{2}\) tìm x2?
B) biết x;y tỉ lệ nghịch và x1=\(\dfrac{1}{2}\) ; y1=4;y2=-4 tìm x2?
Bạn tham khảo bài này:
https://hoc24.vn/cau-hoi/cho-biet-y-ti-le-thuan-voi-x1-x2-la-cac-gia-tri-cua-x-y1y2-la-cac-gia-tri-tuong-uong-cua-y-a-biet-xy-ti-le-thuan-va-x1-2-x2-3-y1-12-tim-y2-b-biet-xy-ti-le-nghich-v.3536605510330
Hai số x và y tỉ lệ nghịch với 3 và 4. Biết x = \(\dfrac{3}{5}\) tìm giá trị của y
Lời giải:
Với $x,y$ tỉ lệ nghịch với $3,4$ thì:
$3x=4y$
$\Rightarrow y=\frac{3}{4}x=\frac{3}{4}.\frac{3}{5}=\frac{9}{20}$
Cho tỉ lệ thức: \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}.\) Tìm giá trị tỉ số \(\dfrac{x}{y}\)
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\Rightarrow4\left(2x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\Rightarrow12x-3x=3y+4y\)
\(\Rightarrow9x=7y\Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
1, Cho tỉ lệ thức \(\dfrac{3x-y}{x+y}\) = \(\dfrac{3}{4}\). Tính giá trị của tỉ số \(\dfrac{x}{y}\)
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Leftrightarrow12x-4y=3x+3y\)
\(\Leftrightarrow12x=3x+7y\)
\(\Leftrightarrow9x=7y\)
\(\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{9}\Leftrightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Ta có : \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Leftrightarrow12x-4y=3x+3y\Rightarrow15x=7y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{7}{15}\)
tik mik nha !!!
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$