5x^2(3y-1)-[3x^2(5y+2)-2x(3x^2-7x)]
Bài 1: Thực hiện phép tính
1, (3y +1/3y^4)^2
2, (-3x^2 -1/2x)^2
3, (x^2 +2x -3)^2
4, 3 (x+3) (x-3) - (x-9)^2
5, (x^n +x^n:1)^2
6, (5x-3y)^2 - (5x +3y)^2
7, (3x -x^2 +5)^2
8, (-2x +5y)^3
9, (1/3x^2 -5y^3)^3
10,(m^2n^3+n^2m^3) (m^2n^3 - n^2m^3)
11, (7x+6y)^2 - (7x +6y) (7x -6y)
12, (x-y)^2 +(y+x)^2 - (2x -y)^z
13, (a-b)^3 + (a+b)^3
14, (a-b)^3 -(a-b)^3
15, (3x-5y)^4 - (3x +5y)^4
Mọi người làm giúp mình vs
a) cho x^2 = y^2+z^2. chứng minh: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
b) cho 10x^2=10y^2+z^2. chứng minh: (7x-3y+2z)(7x-3y-2z)=(3x-7y)^2
1/ (x+1)^2 - 16y^2
2/ 2x^2 - 8
3/ 3x^2 - 5x - 3y^2 + 5y
4/ 3x^2 -7x +6
5/ x^2 + y^2 - 4x^2y^2 + 2xy
6/ x^2 + 1 - y^2 + 2x
1) \(\left(x+1\right)^2-16y^2\)
\(=\left(x+1\right)^2-\left(4y\right)^2\)
\(=\left(x+1-4y\right).\left(x+1+4y\right)\)
2) \(2x^2-8\)
\(=\left[\left(\sqrt{2x}\right)^2\right]^2-\left(\sqrt{8}\right)^2\)
\(=\left[\left(\sqrt{2x}\right)^2-\sqrt{8}\right].\left[\left(\sqrt{2x}\right)^2+\sqrt{8}\right]\)
6) \(x^2+1-y^2+2x\)
\(=x^2+2x+1-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1-y\right).\left(x+1+y\right)\)
Chúc bạn học tốt!
3/ 3x^2 - 5x - 3y^2 + 5y
= ( 3x\(^2\) - 3y\(^2\) ) - (5x - 5y ) = 3 ( x\(^2\) - y\(^2\) ) - 5 ( x - y )= 3 ( x - y ) ( x + y ) - 5 ( x - y )
= ( x - y ) ( 3x + 3y - 5 )
Các bạn giải giúp mình những bài toán này nhé :
a. (x^2 - y^2 ) - (5x+5y)
b. 5x^3 - 5x^2y - 10x^2 + 10 xy
c . 2x^2 - 5x
d . x^3- 3x^2 + 1 - 3x
e . 3x^2 - 6xy + 3y^2 - 12z^2
f . 3x^2 - 7x - 10
g . x^4 + 1 - 2x^2
h . 3x^2 - 3y^2 - 12x + 12y
j . x^2 - 3x + 2
Các bạn giúp mình nhé !!!!!!!! ^-^
a) =(x-y)*(x+y)-(5*(x+y))
=(x+y)*(x-y-5)
Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung
bai nao khong hieu thi pan nhan tin vào nick minh minh se giai đùm ban
a) (x2 - y2) - 5(x + y)
= (x - y)(x + y) - 5 (x + y)
= (x + y) (x - y -5)
b) 5x3 - 5x2y - 10x2 + 10 xy
= 5[(x3 - x2y) - (2x2 - 2 xy)]
=5[x2(x - y) - 2x(x - y)]
=5x(x-y)(x - 2)
c) 2x2 - 5x = x(2x - 5)
d) x3 - 3x2 +1 - 3x
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 - x + 1) - 3x(x + 1)
= (x + 1) [x2 - x + 1 - 3x]
= (x + 1)[x2 - 4x + 1]
= (x + 1)[x2 - 2.x.2 + 22 - 22 + 1]
= (x + 1)[(x - 2)2 - 3]
= \(\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)
e) 3x2 - 6xy + 3y2 - 12z2
= 3[ x2 - 2xy + y2 - 4z2]
= 3[ (x - y)2 - (2z)2]
= 3(x - y + 2z)(x - y - 2z)
f) 3x2 - 7x - 10
= 3x2 - 7x - 7 - 3
= (3x2 -3) - (7x + 7)
= 3(x2 - 1) - 7(x + 1)
= 3 (x + 1)(x - 1) - 7(x + 1)
= (x + 1)[3(x - 1) - 7]
= (x +1)(3x - 8)
g) x4 + 1 - 2x2 = (x2)2 - 2.x2 + 1 = (x2 - 1)2
= (x + 1)2(x - 1)2
h) 3x2 - 3y2 - 12x + 12y
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 12(x -y)
= (x - y) [3(x + y) - 12]
= (x - y). 3. (x+y - 4)
j) x2 - 3x + 2 = x2 - x - 2x +2
= x(x - 1) - 2(x -1)
=(x - 1)(x - 2)
a) =(x-y)*(x+y)-(5*(x+y))
=(x+y)*(x-y-5)
Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung
Cho x2=y2+t2
Chứng minh (5x-3y+4t)(5x-3y-4t)=(3x-5y)2
Cho 10x2=10y2+t2
Chứng minh (7x-3y+2t)(7x-3y-2t)=(3x-7y)2
Bài 1 làm tính nhân
2x.(x^2-7x-3)
(-2x^3+y^2-7xy).4xy^2
(-5x^3).(2x^2+3x-5)
(2x^2-xy+y^2).(-3x^3)
(x^2-2x+3).(x-4)
(2x^3-3x-1).(5x+2)
Bài 2 Thực hiện phép tính
A,(2x+3y^2)
B, (5x-y)^2
C, (2x+y^2)^3
D, ( 3x^2-2y)^3
\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)
\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)
phân tích các đa thức sau thành nhân tử:
a)39x-39y
b)3x^2.(x-3y)-5y.(3y-x)
c)16x^2+24xy+9y^2
d)25x^2-1/25y^2
e)7x^2-7xy+5x-5y
f)5x^2-45y^2-30y-5
g)x^2+2x+1-y^2+4y-1
h)4x^2+8x-5
a) \(39x-39y=39\left(x-y\right)\)
b) \(3x^2\left(x-3y\right)-5y\left(3y-x\right)=3x^2\left(x-3y\right)+5y\left(x-3y\right)\)
\(=\left(3x^2+5x\right)\left(x-3y\right)=x\left(3x+5\right)\left(x-3y\right)\)
c) \(16x^2+24xy+9y^2=\left(4x\right)^2+4x.3y.2+\left(3y\right)^2=\left(4x+3y\right)^2\)
d) \(25x^2-\frac{1}{25y^2}=\left(5x\right)^2-\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)\left(5x+\frac{1}{5y}\right)\)
e) \(7x^2-7xy+5x-5y=7x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(7x+5\right)\)
f) \(5x^2-45y^2-30y-5=5\left(x^2-9y^2-6y-1\right)=5\left[x^2-\left(9y^2+6y+1\right)\right]\)
\(=5\left[x^2-\left(3y+1\right)^2\right]=5\left(x-3y-1\right)\left(x+3y+1\right)\)
g) \(x^2+2x+1-y^2-4y-1=\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\) ( Chắc đề vậy :v )
\(=\left(x+1\right)^2-\left(y+1\right)^2=\left(x+1-y-1\right)\left(x+1+y+1\right)=\left(x-y\right)\left(x+y+2\right)\)
h) \(4x^2+8x-5=4x^2-2x+10x-5=2x\left(2x-1\right)+5\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x+5\right)\)
Chứng minh rằng các biểu thức sau ko phụ thuộc vào biến !!! A=3x(x-5y)+(y-5x)-3y-3(x^2-y^2)+1 B=3x(2x-5y)+(3x-y)-2x×1/2(-26xy)
a) 15x = 10y =6z và 5x^3 + 2y^3 -z^3 =31
b) 7x =14y =6z và 2x^2 - 3y^2 =5
c) 3x = 8y =5z và |x-2y| =5
d) 4x = 5y = 6z và (3x-2y)^2 =16
Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó 5x3 + 2y3 - z3 = 31
=> 5(2k)3 + 2(3k)3 - (5k)3 = 31
=> 40k3 + 54k3 - 125k3 = 31
=> -31k3 = 31
=> k3 = -1
=> k = -1
=> x = -2 ; y = -3 ; z = -5
b) Ta có 7x = 14y = 6z => \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)
Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)
Khi đó 2x2 - 3y2 = 5
<=> 2.(6k)2 - 3.(3k)2 = 5
=> 72k2 - 27k2 = 5
=> 45k2 = 5
=> k2 = 1/9
=> k = \(\pm\frac{1}{3}\)
Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3
Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3
Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)
c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)
Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)
Khi đó |x - 2y| = 5
<=> |40k - 2.15k| = 5
=> |10k| = 5
=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)
Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12
Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12
d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)
Khi đó (3x - 2y)2 = 16
<=> (3.15k - 2.12k)2 = 16
=> (45k -24k)2 = 16
=> (21k)2 = 16
=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)
Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21
Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21
Ai có cách làm khác không