CMR: Với a>b thì \(\overline{ab}-\overline{ba}=\overline{a-b}\cdot9\).
(Mình tự ra đề nên không biết nên cho đề lớp mấy@_@)
Xét số \(\overline{abc}\) = ab + bc + ca + ac + cb + ba (Có dấu gạch ngang trên từng số nha!! Nhìu qá nên mình không viết hết dấu gạch ngang)
a, CMR \(\overline{abc}\) là số chẵn và \(\overline{abc}\) chia hết cho 11
b, Tìm số \(\overline{abc}\) biết a = 1
a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)
\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)
\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)
\(=22a+22b+22c\)
\(=22\left(a+b+c\right)\)
Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )
Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )
4. Cho tỉ lệ thức \(\dfrac{\overline{ab}}{\overline{bc}}\) = \(\dfrac{a}{c}\), CMR \(\dfrac{\overline{abbb...b}}{\overline{bbb...bc}}\) = \(\dfrac{a}{c}\)(1) với n - 1 số b và n ϵ N*.
Gíup mình với cảm ơn các bạn nhiều!!!
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\\ =\dfrac{111...11\left(9a+b\right)}{111...11.10b}\)(có n chữ số 1 trong 111...11)
\(\dfrac{999...99a+111...11b}{111.110b}\\ =\dfrac{999...99a+a+111...11}{111.10b+c}=\dfrac{abbb...bb}{bbb...bc}=\dfrac{a}{c}\)(đpcm)
CMR:
a) \(\overline{ab}+\overline{ba}⋮11\)
b) \(\overline{ab}-\overline{ba}⋮9\)
a) Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=\left(10a+a\right)+\left(b+10b\right)\)
\(=11a+11b⋮11\left(đpcm\right)\)
b) Ta có : \(\overline{ab}-\overline{ba}=10a+b-\left(10+a\right)\)
\(=\left(10a-a\right)-\left(10b-b\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\left(đpcm\right)\)
a)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
b)ab-ba⋮9
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b-10b+a
= 9a - 9b
Ta thấy: 9a⋮9 ; 9b⋮9
=>ab+ba⋮9 (ĐPCM)
Cho \(\dfrac{\overline{ab}+\overline{bc}}{a+c}=\dfrac{\overline{bc}+\overline{ca}}{b+c}=\dfrac{\overline{ca}+\overline{ab}}{c+a}\)
CMR : a = b = c
Cho hai số tự nhiên a và b.Tính a-b biết \(\overline{a+b=\sqrt{\overline{ab}}}\) và \(2\left(a+b\right)=\overline{ba}\)
Cho:\(\dfrac{a+\overline{bc}}{\overline{abc}}=\dfrac{b+\overline{ca}}{\overline{bca}}=\dfrac{c+\overline{ab}}{\overline{cab}}\)
CMR:\(\overline{\dfrac{bc}{a}=\dfrac{\overline{ca}}{b}=\dfrac{\overline{ab}}{c}}\)
Tìm số có 2 chữ số ab biết:
a) \(\overline{ab}\) + \(\overline{ba}\) = 132 và \(\overline{ab}\) - \(\overline{ba}\) = \(\overline{3}\)*
b) \(\overline{ab}\) : (a - b) = 11 (dư 4) và \(\overline{ab}\) chia hết cho 9
c) \(\overline{ab}\) : (a + b) = 8 (dư 2)
d) 2 = 2 x \(\overline{ba}\) + 2
Cho \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\). Cmr\(\frac{\overline{abb...b}}{\overline{bb...bc}}=\frac{a}{c}\)(n chữ số b) (n thuộc N)
Giúp mình nhé!
Tìm \(\left(\overline{ab}+\overline{ba};33\right),\)biết rằng a + b không chia hết cho 3
Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=11\left(a+b\right)\)
và 33 = 11 . 3
mà \(a+b\)không chia hết cho 3
Nên (\(\left(\overline{ab}+\overline{ba};33\right)=11\)