giải pt: Sin7x+cos8x=0
giải pt: sin7x+cos 8x=0
giải pt: cos3x + cos5x + cos8x +1 =0
help pls :(
\(\Leftrightarrow2cos4x.cosx+2cos^24x-1+1=0\)
\(\Leftrightarrow2cos4x\left(cos4x+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x+cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x=cos\left(\pi-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\4x=\pi-x+k2\pi\\4x=x-\pi+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x=...\)
rút gọn biểu thức: A=\(\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}\)
Rút gọn biểu thức:
\(A=\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}\)
A=\(\frac{\left(cos7x+cos10x\right)-\left(cos8x+cos9x\right)}{\left(sin7x+sin10x\right)-\left(sin8x+sin9x\right)}\) =\(\frac{2cos\frac{17x}{2}.cos\frac{3x}{2}-2cos\frac{17x}{2}.cos\frac{x}{2}}{2sin\frac{17x}{2}.cos\frac{3x}{2}-2sin\frac{17x}{2}.cos\frac{x}{2}}\)
=\(\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}\)=\(\frac{cos\frac{17x}{2}}{sin\frac{17x}{2}}\)=cotg\(\frac{17x}{2}\)
Với giả thiết biểu thức có nghĩa hãy rút gọn: \(A=\frac{\cos7x-\cos8x-\cos9x+\cos10x}{\sin7x-\sin8x-\sin9x+\sin10x}\)
\(A=\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}=\frac{(cos10x+cos7x)-\left(cos9x+cos8x\right)}{\left(sin10x+sin7x\right)-\left(sin9x+sin8x\right)}.\)
\(=\frac{2cos\frac{17x}{2}cos\frac{3x}{2}-2cos\frac{17x}{2}cos\frac{x}{2}}{2sin\frac{17x}{2}cos\frac{3x}{2}-2sin\frac{17x}{2}cos\frac{x}{2}}=\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}=cotan\frac{17x}{2}.\)
Giải pt
\(2sin^22x+sin7x-1=sinx\)
\(\Leftrightarrow1-cos4x+sin7x-1=sinx\)
\(\Leftrightarrow sin7x-sinx-cos4x=0\)
\(\Leftrightarrow2.cos4x.sin3x-cos4x=0\)
\(\Leftrightarrow cos4x\left(2.sin3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\3x=\dfrac{\pi}{6}+k2\pi\\3x=\pi-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\)) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\) (\(k\in Z\))
Kết luận:...
Hãy biểu diễn cosx và sinx:
a) cos5x b) cos8x c) sin6x d) sin7x
a) cos5x=cos5x-10cos3xsin2x+5cosxsin4x
b) cos8x-28cos6xsin2x+70cos4xsin4x-28cos2xsin6x+sin8x
c) 6cos5xsinx-20cos3xsin3x+6cosxsin5x
d) 7cos6xsinx-35cos4xsin3x+21cos2xsin5x-sin7x
HOK TỐT
giải pt
\(2cos5x.cos3x+sinx=cos8x\)
\(\Leftrightarrow cos8x+cos2x+sinx=cos8x\)
\(\Leftrightarrow cos2x=-sinx\)
\(\Leftrightarrow cos2x=cos\left(x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\frac{\pi}{2}+k2\pi\\2x=-x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Biến đổi thành tích
a/ 2sin4x + \(\sqrt{2}\) b/ 3 _ 4cos2x
c/1-3tan2x d/sin2x + sin 4x +sin 6x
e/ 3+cos4x+cos8x f/sin5x+ sin6x+sin7x+sin8x
g/ 1 + sin2x -cos2x - tan2x h/sin2x ( x+90 ) - 3cos2(x-90)
i/ cos5x+cos8x+cos9x + cos12x k/ cosx + sinx +1