Tìm số hữu tỉ x, biết:
a) (x-1)5=-243
b) x-2\(\sqrt{x}\)=0 (x\(\ge\)0)
Tìm số hữu tỉ biết
a) (x-1)\(^5\) = - 243
b) \(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
c)x - 2\(\sqrt{x}\)= 0 (x \(\ge\)0)
a, \(\left(x-1\right)^5=-243\)
\(\Leftrightarrow\left(x-1\right)^5=-3^5\)
\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)
b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
Tím số hữu tỉ x, biết : \(x-2\sqrt{x}=0\) (x\(\ge\)0)
\(x-2.\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
Tìm số hữu tỉ x biết:
a) \(\left(x-1\right)^5=-243\)
b) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
c)\(x-2\sqrt{x}=0\left(x\ge0\right)\)
Tìm các số hữu tỉ b,c biết \(x^2+bx+c=0;x=\sqrt{31-8\sqrt{15}}\)
\(x=\sqrt{31-8\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)^2}=4-\sqrt{15}\)
Biểu thức nghịch đảo của x là \(\dfrac{1}{4-\sqrt{15}}=4+\sqrt{15}\)
\(\Rightarrow x=4\pm\sqrt{15}\) là nghiệm PT \(x^2+bx+c\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}S=x_1+x_2\\P=x_1x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=8\\P=1\end{matrix}\right.\) (x1 và x2 là nghiệm của (1))
Áp dụng Viet đảo thì x là nghiệm của PT \(x^2-8x+1\)
Vậy \(b=-8;c=1\)
Bạn có thể làm thế này:
\(x=4-\sqrt{15}\)
Giả sử \(x=4-\sqrt{15}\) là nghiệm của PT \(x^2+bx+c=0\)
\(\Leftrightarrow\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+c=0\\ \Leftrightarrow31-8\sqrt{15}+4b-b\sqrt{15}+c=0\\ \Leftrightarrow\sqrt{15}\left(b+8\right)=-\left(4b+c+31\right)\)
Vì b,c hữu tỉ nên \(\sqrt{15}\left(b+8\right)\) hữu tỉ
\(\Leftrightarrow\left\{{}\begin{matrix}b+8=0\\4b+c+31=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-8\\c=1\end{matrix}\right.\)
Tìm số hữu tỉ x biết
a,(x+1)(x-2)<0
b,(x+1/2)(x-2)>0
a/ (x+1)(x-2) < 0 => \(\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow-1< x< 2\)
b/ (x+1/2)(x-2) > 0 => \(\begin{cases}x+\frac{1}{2}>0\\x-2>0\end{cases}\) hoặc \(\begin{cases}x+\frac{1}{2}< 0\\x-2< 0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x< -\frac{1}{2}\\x>2\end{array}\right.\)
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
tìm số hữu tỉ x biết :
a) x+(1/x)=0
b) x+(2/x)=5
a) x√3 + 3 = y√3 − x
b) (x - 2)√(25n^2+5)+y-2=0 (n E N)
tìm số hữu tỉ x biết :
a) x+(1/x)=0
b) x+(2/x)=5
a) x√3+3=y√3−x
b) (x - 2)√(25n^2+5)+y-2=0 (n E N)
tìm x,y là các số hữu tỉ biết rằng a,\(x+\frac{1}{x}=1\);b,\(x+\frac{2}{x}=5\)
c,\(x\sqrt{3}+3=y\sqrt{3}-x\)
d,\(\left(x-2\right)\sqrt{25n^2+5}+y-2=0;nthuộcN\)