Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Khang
Xem chi tiết
Diệu Huyền
3 tháng 12 2019 lúc 10:11

Ta có: \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

\(\Rightarrow\frac{3a+4b}{3a-4b}-1=\frac{3c+4d}{3c-4d}-1\)

\(\Leftrightarrow\frac{8b}{3a-4b}=\frac{8d}{3c-4d}\)

\(\Rightarrow b\left(3c-4d\right)=d\left(3a-4b\right)\)

\(\Leftrightarrow3bc=3ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Khách vãng lai đã xóa
Phạm Trung Thành
Xem chi tiết
Trịnh Xuân Diện
11 tháng 10 2015 lúc 22:07

Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}\)

Aps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}\)

=>\(\frac{a}{c}=\frac{3a+4b}{3c+4d}=>\frac{3c+4d}{c}=\frac{3a+4b}{a}\)(đpcm)

Trần Thị Diễm Quỳnh
11 tháng 10 2015 lúc 21:59

a/b=c/d

=>a/c=b/d=3a/3c=4b/4d=(3a+4b)/(3c+4d) (tính chất dãy tỉ số = nhau)

có a/c=(3a+4b)/(3c+4d)

=>dpcm

nguyễn thi trúc linh
Xem chi tiết
I don
5 tháng 9 2018 lúc 16:36

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}.\)

\(\Rightarrow\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4a}{4b}\)

Lại có: \(\frac{5a}{5b}=\frac{2c}{2d}=\frac{5a+2c}{5b+2d}\)

\(\Rightarrow\frac{4a}{4b}=\frac{5a+2c}{5b+2d}\Rightarrow\frac{5a+2c}{4a}=\frac{5b+2d}{4b}\)

I don
5 tháng 9 2018 lúc 16:38

c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Lại có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\frac{\left(a+b^2\right)}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

le duc minh vuong
Xem chi tiết
Nguyễn Huy Tú
5 tháng 1 2017 lúc 12:27

Giải:

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)

Vậy...

Khải Phan
Xem chi tiết
Nguyễn Thanh Hằng
21 tháng 9 2017 lúc 18:30

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\left(1\right)\)

\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{2a-5b}{3a+4b}=\dfrac{2bk-5b}{3bk+4b}=\dfrac{b\left(2k-5\right)}{b\left(3k+4\right)}=\dfrac{2k-5}{3k+4}\left(1\right)\)

\(VP=\dfrac{2c-5d}{3c+4d}=\dfrac{2dk-5d}{3dk+4d}=\dfrac{d\left(2k-5\right)}{d\left(3k+4\right)}=\dfrac{2k-5}{3k+4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

Nguyễn Ngọc Linh
Xem chi tiết
Đỗ Lê Tú Linh
13 tháng 12 2015 lúc 15:25

Gọi a/b=c/d=k nên a=bk;c=dk

=>2a+5b/3a-4b=2bk+5b/3bk-4b=b(2k+5)/b(3k-4)=2k+5/3k-4(1)

=>2c+5d/3c-4d=2dk+5d/3dk-4d=d(2k+5)/d(3k-4)=2k+5/3k-4(2)

Từ (1);(2) =>2a+5b/3a-4b=2c+5d/3c-4d

nguyen thi mai thanh
22 tháng 11 2017 lúc 20:30

Thank Đỗ Lê Tú Linh n' 😊😊😊

phuong hoang lua
10 tháng 12 2017 lúc 16:39

😀😀😀

Nguyễn Thị Phương Linh
Xem chi tiết
Nguyễn Thị Việt Nga
20 tháng 7 2017 lúc 14:27

Ta có:

\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{3a}{3b}=\frac{3c}{3d}\)=>\(\frac{3a}{3c}=\frac{3b}{3d}\)                                 ;            \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{4a}{4b}=\frac{4c}{4d}\)=>\(\frac{4a}{4c}=\frac{4b}{4d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3a}{3c}=\frac{3b}{3d}=\frac{3a+3b}{3c+3d}\)                                                           ;              \(\frac{4a}{4c}=\frac{4b}{4d}=\frac{4a+4b}{4c+4d}\)

\(\frac{3a}{3b}=\frac{3b}{3d}=\frac{4a}{4c}=\frac{4b}{4d}\)

=>\(\frac{3a+3b}{3c+3d}=\frac{4a+4b}{4c+4d}\)

huỳnh ngọc anh
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Tô Hà Thu
30 tháng 10 2021 lúc 21:08

\(=\dfrac{11a+17b}{11c-17d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow...\)

OH-YEAH^^
30 tháng 10 2021 lúc 21:44

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

\(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11bk+17b}{3bk-4b}=\dfrac{b\left(11k+17\right)}{b\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(1\right)\)

\(\Rightarrow\dfrac{11c+17d}{3c-4d}=\dfrac{11dk+17d}{3dk-4d}=\dfrac{d\left(11k+17\right)}{d\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)