\(5+\sqrt{5}-2\sqrt{2}\)
Biến đổi thành hằng đẳng thức
Biến đổi thành hằng đẳng thức
\(\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
Đưa \(\sqrt{10+2\sqrt{5}}\) thành hằng đẳng thức
10+2 căn 5
= 10+2 căn 10 . căn 2 trên 2+2 trên 4
= (căn 10+ căn 2 trên 2) 2
mik ko biết viết căn nhé, bạn tự dịch, còn kqua sai thì thôi nhé
thành hằng đẳng thức đc ko nhỉ 14-6\(\sqrt{5}\)
\(=\left(3-\sqrt{5}\right)^2\)
Bấm máy giải pt bậc 2 với hệ số: \(1\) ; \(-14\); \(\dfrac{6^2.5}{4}\) nghiệm trả về sẽ cho biết có phân tích được hay không
Hãy biến đổi biểu thức sau về hàng đẳng thức rồi thu gọn\(\sqrt{12-3\sqrt{7}}\) và\(\sqrt{10+2\sqrt{5}}\)
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
Tính giá trị biểu thức (Nhân thêm số căn vào biểu thức để làm xuất hiện hằng đẳng thức \(\left(a\pm\sqrt{b}\right)^2\) hoặc \(\left(\sqrt{a}\pm\sqrt{b}\right)^2\) rồi phá căn)
a. \(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
b. \(\dfrac{\sqrt{3}+1}{2}.\sqrt{8-2\sqrt{3}}\)
a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)
\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)
\(=32+8\sqrt{15}-8\sqrt{15}-30\)
=2
biến đổi thành hằng đẳng thức\(^{x^2+4x+4}\)
BBieesn đổi hằng đẳng thức
x²+4x+4
=x²+2.2x+2²
=(x+2)²
Ta có:
\(x^2+4x+4\)
\(=x^2+2.2x+2^2\)
\(=\left(x+2\right)^2\)
Cho mình hỏi cách tách x và y thành hằng đẳng thức một cách hiệu quả nhất với
vd: \(\sqrt{19-8\sqrt{3}}=\sqrt{16-8\sqrt{3}+3}=\sqrt{\left(4-\sqrt{3}\right)^2}\)
Em kéo xuống trang 40, mục số 3:
Một số mẹo nhỏ với Casio.pdf - Google Drive
\(\left(\sqrt{3+\sqrt{15}-\sqrt{3-\sqrt{5}}}\right)^2\)
chỉ giúp tui đê
áp dụng hằng đẳng thức đó mn
\(\left(\sqrt{3+\sqrt{15}-\sqrt{3-\sqrt{5}}}\right)^2=3+\sqrt{15}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(3+\sqrt{15}-\sqrt{3-\sqrt{5}}\right)}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\left|\sqrt{5}-1\right|}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{5}+1}{\sqrt{2}}=\dfrac{\sqrt{2}\left(3\sqrt{2}+\sqrt{30}-\sqrt{5}+1\right)}{2}=\dfrac{6+2\sqrt{15}-\sqrt{10}+\sqrt{2}}{2}\)