Viet cac bieu thuc sau duoi dang tong
a.(\(\dfrac{1}{2}-x\))\(^3\)
b(x+y+z)22 ; (x-y+z)22
c.(x-y-z)22
d.(x+y+z).(x-y-z)
e.(x-y+z).(x+y+z)
f.(x+1)(x22 +2xy+4y22)
g.(x-2y)(x22 +2xy+4y22)
h. (a22-2a+3)(a22 +2a-3)
i.(a22 +2a+3)(a22 -2a-3)
Giup voi nha
1. viet cac bieu thuc sau duoi dang tong
a) (2x+3y)2 ; (0,01+xy)2
b) (x-2y).(x-2y) ; (56.64)
c) (x-y+z).(x+y+z)
d) (x+y+z).(x-y-z)
e) (x+1).(x-1)
viet cac bieu thuc sau duoi dang tong
(x+2y)^3
(2x-y)^3
(_5a-b)^3
CMR bieu thuc sau viet duoc duoi dang tong cac binh phuong cua hai bieu thuc
x2+2(x+1)2+3(x+2)2+4(x+3)2
viet cac bieu thuc sau duoi dang tong:
a,(4-xy)^3
b,(0,1+xy)^3
\(a,\left(4-xy\right)^3\)
\(=4^3-3.4^2xy+3.4.x^2y^2-x^3y^3\)
\(=64-48xy+12x^2y^2-x^3y^3\)
\(b,\left(0,1+xy\right)^3\)
\(=\left(0,1\right)^3+3.\left(0,1\right)^2xy+3.0,1.\left(xy\right)^2+x^3y^3\)
\(=0,001+0,03xy+0,3x^2y^2+x^3y^3\)
viet cac bieu thuc sau duoi dang tong:
a,(-3x+2)\(^3\)
\(a,\left(-3x+2\right)^3\)
\(=\left(2-3x\right)^3\)
\(=2^3-3.2^2.3x+3.2.9x^2-27x^3\)
\(=8-36x+54x^2-27x^3\)
viet cac bieu thuc sau duoi dang tong:
a,(-3x+2)\(^3\)
\(a,\left(-3x+2\right)^3=\left(2-3x\right)^3=2^3-3.2^2.3x+3.2.9x^2-27x^3=8-36x+54x^2-27x^3\)
viet cac bieu thuc sau duoi dang tich: x^3 y^3+225
\(x^3y^3+125=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
viet cac bieu thuc sau duoi dang binh phuong cua mot tong hoac mot hieu
xy^2+(2+xy^2)+10-6x+x^2
3) viet cac bieu thuc sau duoi dang binh phuong mot tong hoac mot hieu :
a) 4x2+ 4xy +y2 b) 9m2 +n2-6mn
c) 16a2+25b2+40ab d) x2-x+ 1phan 4
a, \(4x^2+4xy+y^2=\left(4x\right)^2+2.2x.y+y^2\)
\(=\left(4x+y\right)^2\)
b, \(9m^2+n^2-6mn=\left(3m\right)^2-2.3m.n+n^2\)
\(=\left(3m-n\right)^2\)
c, \(16a^2+25b^2+40ab=\left(4a\right)^2+2.4a.5b+\left(5b\right)^2\)
\(=\left(4a+5b\right)^2\)
d, \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
Chúc bạn học tốt!!!
Viet bieu thuc sau duoi dang binh phuong cua 1 tong:
2xy2 + x2y4 +1
\(2xy^2+x^2y^4+1\\ =\left(xy^2\right)^2+2xy^2.1+1^2\\ =\left(xy^2+1\right)^2\)
Ta có :
\(2xy^2+x^2y^4+1=\left(xy^2\right)^2+2.xy^2.1+1^2\)
\(=\left(xy^2+1\right)^2\)