Chứng minh
\(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
Chứng minh: \(\sqrt{10+\sqrt{60}+\sqrt{24}+\sqrt{40}}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
\(10+\sqrt{60}+\sqrt{24}+\sqrt{40}=10+2\sqrt{15}+2\sqrt{6}+2\sqrt{10}\)
\(=\left(5+2\sqrt{15}+3\right)+2+2\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^2+2\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)+2\)
\(=\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{10+\sqrt{60}+\sqrt{24}+\sqrt{40}}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
Dùng hẳng đẳng thức 3 số:
$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$
$VT=\sqrt{5+3+2+2\sqrt{15}+2\sqrt{6}+2\sqrt{10}}=\sqrt{(\sqrt5+\sqrt3+\sqrt2)^2}=VP(đpcm)$
Chứng minh:
\(\sqrt{10+\sqrt{60}+\sqrt{24}+\sqrt{40}}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
\(\sqrt{10+2\sqrt{15}+2\sqrt{6}+2\sqrt{10}}\)
\(=\sqrt{5+3+2+2\sqrt{5}.\sqrt{3}+2\sqrt{3}.\sqrt{2}+2\sqrt{5}.\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
Chứng minh các hằng đẳng thức sau:
a) \(y\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24+\sqrt{12}+\sqrt{8}}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh các hằng đẳng thức:
a) \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
Bạn áp dụng hằng đẳng thức (a+b+c)^2= a^2+b^2+c^2+2(ab+ac+bc)
CMR:\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2+3+5+2\sqrt{2.3}+2\sqrt{2.5}+2\sqrt{3.5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}-\sqrt{3}-\sqrt{5}+2\)
C/m : \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
Muội chả hỉu sao tỷ học giỏi vậy!
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=2006\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Rút gọn các biểu thức sau:
a.\(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
b.\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
c.\(\sqrt{8+\sqrt{40}+\sqrt{20}+\sqrt{8}}\)
d.\(\sqrt{10+\sqrt{24}+\sqrt{20}+\sqrt{8}}\)
d.\(\sqrt{10+\sqrt{24}-\sqrt{40}-\sqrt{60}}\)
a/ \(\sqrt{2}+\sqrt{6}\)
b/ Sửa đề:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)
c/ \(1+\sqrt{2}+\sqrt{5}\)
a/ \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=2\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}\)
\(=2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)
\(=2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}\)
\(=2\sqrt{3+\sqrt{4-2\sqrt{3}}}\)
\(=2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}\)
\(=2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=2\sqrt{3+\left(\sqrt{3}-1\right)}\)
\(=\sqrt{2}\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{2}\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{2}\left(\sqrt{3}+1\right)\)
\(=\sqrt{2}+\sqrt{6}\)