Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yoriichi Tsugikuni
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

I LOVE YOU
Xem chi tiết
Nguyễn Thanh Hằng
30 tháng 8 2017 lúc 21:37

a, Theo bài ta có :

\(\dfrac{a}{b}=\dfrac{10}{3}\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{3}\)

Đặt :

\(\dfrac{a}{10}=\dfrac{b}{3}=k\left(k\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)

Ta có :

\(Q=\dfrac{3a-2b}{a-3b}=\dfrac{3.10k-2.3k}{10k-3.3k}=\dfrac{30k-6k}{10k-9k}=\dfrac{24k}{1k}=24\)

Vậy ...........

Nguyễn Đình Dũng
30 tháng 8 2017 lúc 21:47

a-b=3=>a=b+3 Thay a=b+3 vào B

\(\Rightarrow B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)

\(\Rightarrow B=1-\dfrac{4b-b+12}{3b+9+3}=1-1=0\)

Nguyễn Đình Dũng
30 tháng 8 2017 lúc 21:41

\(\dfrac{a}{b}=\dfrac{10}{3}\Rightarrow3a=10b\Rightarrow a=\dfrac{10}{3}b\)

thay vào A ta có:

\(A=\dfrac{10b-2b}{\dfrac{10}{3}b-3b}=\dfrac{8b}{\dfrac{1}{3}b}=8:\dfrac{1}{3}=24\)

Hai ThanhHai
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2022 lúc 9:10

4a-b=6 nên b=4a-6

\(\dfrac{6a-b}{3a+5}-\dfrac{4a-4b}{3b-5}\)

\(=\dfrac{6a-\left(4a-6\right)}{3a+5}-\dfrac{4a-4\left(4a-6\right)}{3\left(4a-6\right)-5}\)

\(=\dfrac{6a-4a+6}{3a+5}-\dfrac{4a-16a+24}{12a-18-5}\)

\(=\dfrac{2a+6}{3a+5}-\dfrac{-12a+24}{12a-23}\)

\(=\dfrac{2a+6}{3a+5}+\dfrac{12a-24}{12a-23}\)

\(=\dfrac{\left(2a+6\right)\left(12a-23\right)+\left(12a-24\right)\left(3a+5\right)}{\left(3a+5\right)\left(12a-23\right)}\)

\(=\dfrac{24a^2-46a+72a-138+36a^2+60a-72a-120}{\left(3a+5\right)\left(12a-23\right)}\)

\(=\dfrac{60a^2+14a-258}{\left(3a+5\right)\left(12a-23\right)}\)

hoc hoi
Xem chi tiết
Yen Nhi
8 tháng 4 2022 lúc 21:18

`Answer:`

a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)

Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)

\(E=\frac{3a+2b}{4a-3b}\)

\(=\frac{3k+2.3k}{4k-3.3k}\)

\(=\frac{3k+6k}{4k-9k}\)

\(=\frac{9k}{-5k}\)

\(=-\frac{9}{5}\)

b. Thay `a-b=5` vào biểu thức `F`, ta được:

\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)

\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)

\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)

\(=1+1\)

\(=0\)

Khách vãng lai đã xóa
Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 7:08

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)

BHQV
Xem chi tiết
Lê Anh Khoa
4 tháng 2 2023 lúc 21:50

\(đk:a;b\ne\dfrac{5}{3}\)

\(\dfrac{3b-28}{3a-5}-\dfrac{38-3a}{5-3b}=\dfrac{3b-28}{3\left(11+b\right)-5}-\dfrac{38-3\left(11+b\right)}{5-3b}=1-1=0\)

ỵyjfdfj
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 19:39

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)

Áp dụng tc dtsbn:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)

Nue nguyen
Xem chi tiết
Akai Haruma
9 tháng 2 2018 lúc 11:20

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)

Theo hệ quả của BĐT AM-GM ta có:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

Hà Phạm Như Ý
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
18 tháng 6 2017 lúc 17:49

Ta có : \(\frac{4a-b}{3a+5}=\frac{3a+\left(a-b\right)}{3a+5}=\frac{3a+5}{3a+5}=1\)

            \(\frac{3b-a}{2b-5}=\frac{2b+b-a}{2b-5}=\frac{2b-a+b}{2b-5}=\frac{2b-\left(a-b\right)}{2b-5}=\frac{2b-5}{2b-5}=1\)

Nên : \(\frac{4a-b}{3a+5}+\frac{3b-a}{2b-5}=1+1=2\)

Trà My
18 tháng 6 2017 lúc 18:28

có nhiều cách, có thể là cách này

a-b=5 => a=b+5

=> \(\frac{4a-b}{3a+5}+\frac{3b-a}{2b-5}=\frac{4\left(b+5\right)-b}{3\left(b+5\right)+5}+\frac{3b-\left(b+5\right)}{2b-5}=\frac{4b+20-b}{3b+15+5}+\frac{3b-b-5}{2b-5}\)

\(=\frac{3b+20}{3b+20}+\frac{2b-5}{2b-5}=1+1=2\)

vũ tiền châu
19 tháng 7 2017 lúc 23:26

thay 5=a-b vào