6. Cho \(A=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
a) Tính \(A^2\)
b) Rút gọn A
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
b) \(\sqrt{2-\sqrt{3}}\) - \(\sqrt{2+\sqrt{3}}\)
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)
\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)
\(=\sqrt{7}+1+\sqrt{7}-1\)
\(=2\sqrt{7}\)
b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)
\(=-\dfrac{2}{\sqrt{2}}\)
\(=-\sqrt{2}\)
B1: tính : A = \(\sqrt{7+4\sqrt{3}}\) + \(\sqrt{7-4\sqrt{3}}\)
B2: cho P= 3x-\(\sqrt{x^2-10x+25}\)
a, rút gọn P
b, tính P khi x=2
B3: rút gọn : M = \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với x khác 1
giúp em zới ạ em cảm mơn nhìu nhìu
\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)
\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)
\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)
\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)
B1.
Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)
Bài 1 :
\(A=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\\ =\sqrt{3}+2+2-\sqrt{3}=4\)
Bài 2 :
a) \(P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\)
b) khi x = 2 thì \(P=3.2-\left|2-5\right|=3\)
Bài 3 :
\(M=\dfrac{\sqrt{\left(\sqrt{x}-1\right)^2}}{x-1}=\dfrac{\left|\sqrt{x}-1\right|}{x-1}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\left(\sqrt{3}-2\right)\sqrt{7+4\sqrt{3}}\)
b) \(\sqrt{6+\sqrt{32}}\) - \(\sqrt{11-\sqrt{72}}\)
c) \(\sqrt{21-4\sqrt{5}}\) + \(\sqrt{21+4\sqrt{5}}\)
a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)
=3-4=-1
b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)
c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
Rút gọn biểu thức.
a) \(\sqrt{\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}}\)
b) \(\sqrt{\dfrac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}}\)
a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)
=-1
b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
=1
Rút gọn các biểu thức sau:
9, A = \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
10, A = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
11, A = \(\text{}\text{}\text{}\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
12, A = \(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
13, A = \(\sqrt{9-4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3=6
13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)
\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)
bài 1:
a) Rút gọn biểu thức : \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
b) giải phương trình sau: \(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
c) tính A= \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^3\)
d) rút gọn biểu thức B= \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
28. A=\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a. rút gọn A
b. tính A với x = \(7-4\sqrt{3}\)
c. tìm x khi A=3
a:
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+x-9-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)
b: Khi x=7-4căn 3 thì
\(A=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)
c: A=3
=>căn x-2=1
=>x=9(loại)
\(a,A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(dkxd:x\ne4,x\ge0,x\ne9\right)\)
\(=\dfrac{x-3\sqrt{x}-x+9}{x-9}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{9-x+x-9-x+4\sqrt{x}-4}\)
\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-2}{4\sqrt{x}-4-x}\)
\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(x-4\sqrt{x}+4\right)}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(b,x=7-4\sqrt{3}\Rightarrow A=\dfrac{3}{\sqrt{7-4\sqrt{3}}-2}=\dfrac{3}{\sqrt{\left(\sqrt{3}-2\right)^2}-2}=\dfrac{3}{\left|\sqrt{3}-2\right|-2}=\dfrac{3}{-\sqrt{3}+2-2}=\dfrac{\sqrt{3^2}}{-\sqrt{3}}=-\sqrt{3}\)
\(c,A=3\Rightarrow\dfrac{3}{\sqrt{x}-2}=3\\ \Rightarrow\dfrac{3-3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=0\\ \Rightarrow3-3\sqrt{x}+6=0\\ \Rightarrow-3\sqrt{x}=-9\\ \Rightarrow\sqrt{x}=3\\ \Rightarrow x=9\left(ktm\right)\)
Vậy không có giá trị x thỏa mãn đề bài.
Rút gọn biểu thức
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)
b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)
\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)
Rút gọn
a) A=\(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)
b)B=\(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
Giúp e với ạ
\(A=\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)
\(A=\sqrt{9+6\sqrt{5}+5}+\sqrt{9-6\sqrt{5}+5}\)
\(A=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(A=3+\sqrt{5}+3-\sqrt{5}=6\)
b) \(B=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(B=\sqrt{3-4\sqrt{3}+4}-\sqrt{3+4\sqrt{3}+4}\)
\(B=\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(B=2-\sqrt{3}-\sqrt{3}-2=-2\sqrt{3}\)
Câu a tách 14 thành 5+9 . Có hằng đẳng thức
Câu b tương tự tách 7 thành 4+ 3 nhé
rút gọn biểu thức
\(G=\dfrac{\sqrt[3]{a}.a^{\dfrac{2}{3}}}{\left(a^{4-2\sqrt{3}}\right)^{4+2\sqrt{3}}}\)
\(G=\dfrac{a^{\sqrt{7}+1}.a^{2-\sqrt{7}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}\)
\(H=\dfrac{a^2.\left(a^{-2}.b^3\right).b^{-1}}{\left(a^{-1}.b\right)^3.a^{-5}.b^{-2}}\)
\(H=\dfrac{b^3.a^{-4}.\left(ab^2\right)^3}{\left(a^2\right)^{-2}.\left(ab^3\right)^2.b^2}\)
\(H=\dfrac{b^3.a^{-4}.\left(ab^2\right)^3}{\left(a^2\right)^{-2}.\left(ab^3\right)^2.b^2}\)
\(H=\dfrac{b^3.a^{-4}.\left(ab^2\right)^3}{\left(a^2\right)^{-2}.\left(ab^3\right)^2.b^2}\)