a) \(A^2=\left(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\right)^2\)
\(=\left(\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\right)^2\)
\(=\left(2+\sqrt{3}+2-\sqrt{3}\right)^2\)
\(=4^2\)
\(=16\)
b) \(A=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}\)
\(=4\)
a, \(A=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\Rightarrow7+4\sqrt{3}+7-4\sqrt{3}=14\)