Rút gọn biểu thúc sau :
( x + y + z )(x^2 + y^2 + z^2 - xy - xz -yz) + 3xyz
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/( x^2+y^2+z^2-xy-yz-zx)
\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)
\(=x+y+z\)
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/ x^2+y^2+z^2-xy-yz-zx
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
rút gọn:
\(\dfrac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)
Đặt \(A=x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\\ =\left(x+y\right)^3+z^3-\left(3x^2y+3xy^3+3xyz\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)\cdot z+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Đặt \(B=x^2+y^2+z^2-xy-yz-xz\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)
chứng minh rằng : x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
\(VT=x^3+y^3+z^3-3xyz.\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)=VP\left(đpcm\right)\)
Giải giúp mk mấy bài này nha:
1/x2y + xy2 + x2z + xz2 + y2z + yz2 + 3xyz
2/xy(x-y) - xz(x+z) - yz (2x-y+z)
3/x (y+z)2 + y(z-x)2 + z(x+y)2 - 4xyz
4/yz(y+z) - xz (z-x) - (x+y)
Cảm ơn nhiều lắm ạ
Rút gọn biểu thức
A = (x^2 - yz)/(x + y)(x + z) + (y^2 - xz)/(y + x)(y + z) + (z^2 - xy)/(z + x)(z + y)
cmr
a, x^4-y^4=(x-y)(x^3-x^2y+xy^2+y^3)
b,x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
a)
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)
b)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)
\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)
\(=x^3+y^3+z^3-3xyz\)
a) x2y+xy2+xz2+x2z+y2z+yz2+2xyz
b) x2y+xy2+xz2+x2z+y2z+yz2+3xyz
Rút gọn: \(\frac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\frac{x\left(y^2+z\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(x\ne y\ne z\ne0\)