Cho x,y,z là ba số khác 0 và x+y+z=0. tính giá trị biểu thức:
\(\dfrac{xy}{x^2+y^2-z^2}\)+ \(\dfrac{xz}{x^2+z^2-y^2}\)+\(\dfrac{yz}{y^2+z^2-x^2}\)
Cho \(x+y+z=xyz\) và \(xy+yz+zx\ne-3\)
Chứng minh: \(\dfrac{x.\left(y^2+z^2\right)+y.\left(z^2+x^2\right)+z.\left(x^2+y^2\right)}{xy+yz+zx-3}=xyz\)
tìm các số x,y,z biết x2+y2+z2=xy+yz+xz và x2009+y2009+z2009=32010
cho x,y, z khác 0 thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=0.\)tính \(\dfrac{x^2}{yz}+\dfrac{z^2}{xy}+\dfrac{y^2}{xz}\)
Rút gọn phân thức:\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
Cho x,y,z là các số dương thỏa mãn
\(\frac{1}{yx}+\frac{1}{yz}+\frac{1}{xz}=1\)
tìm giá trị lớn nhất của biểu thức Q=\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).
Tính giá trị của biểu thức:A=\(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Mn giúp em với ạ !!!
Rút gọn biểu thức:
A= \(\dfrac{x^2}{x^2-y^2-z^2}+\dfrac{y^2}{y^2-x^2-z^2}+\dfrac{z^2}{z^2-x^2-y^2}\) biết rằng x+y+z=0 và x*y*z\(\ne\) 0
M.n giúp e nhanh lên . e cần gấp ạ
Cho C=(xy+yz+xz)(\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\));D=xyz(\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\));E=\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\).Tính (C-D):E