\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\Rightarrow\frac{x+y+z}{xyz}=1\)\(\Rightarrow x+y+z=xyz\)
Biến đổi biểu thức dưới mẫu thành:
\(yz\left(1+x^2\right)\)\(=yz+x.\left(x+y+z\right)\)\(\)\(=\left(x+y\right)\left(x+z\right)\)
\(\frac{x}{\sqrt{xy\left(1+x^2\right)}}=\sqrt{\frac{x^2}{\left(x+y\right)\left(x+z\right)}}\) \(\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
CMTT:
\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(Q\le\frac{3}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=\sqrt{3}\)