Cho \(x+y+z=xyz\) và \(xy+yz+zx\ne-3\)
Chứng minh: \(\dfrac{x.\left(y^2+z^2\right)+y.\left(z^2+x^2\right)+z.\left(x^2+y^2\right)}{xy+yz+zx-3}=xyz\)
Cho xy - yz - zx = 0 và xyz khác 0. Tính giá trị biểu thức B = yz/x^2 - zx/y^2 - xy/z^2 .
Cho x + y + z = 2; x2 + y2 + z2 = 18; xyz = - 1.
Tính B = \(\dfrac{1}{xy+z-1}+\dfrac{1}{yz+x-1}+\dfrac{1}{zx+y-1}\)
Cho x,y,z thuộc Z biết:
xy+yz+zx=5
Tính 3x2+3y2+z2
giúp với mai thi rồi!
Cho xy + yz + zx = 0 và x, y, z \(\ne\) 0
Tính M = \(\dfrac{xy}{x^2}\) + \(\dfrac{xz}{y^2}\) + \(\dfrac{xy}{z^2}\)
Rút gọn biểu thức
A = (x^2 - yz)/(x + y)(x + z) + (y^2 - xz)/(y + x)(y + z) + (z^2 - xy)/(z + x)(z + y)
tìm các số x,y,z biết x2+y2+z2=xy+yz+xz và x2009+y2009+z2009=32010
2) Cho các số thực x, y, z thỏa mãn đồng thời các điều kiện sau x + y + z = 2, x^2 + y^2 z^2 = 18 và xyz = -1. Tính giá trị của
S = 1/(xy + z - 1) + 1/(yz + x -1) + 1/(zx + y -1)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Cho x,y,z là các số dương thỏa mãn
\(\frac{1}{yx}+\frac{1}{yz}+\frac{1}{xz}=1\)
tìm giá trị lớn nhất của biểu thức Q=\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)