Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Anh
Xem chi tiết
Edogawa Conan
5 tháng 6 2017 lúc 20:29

Cho

\(\left(x+\sqrt{x+x^2+1}\right)\left(y+\sqrt{y^2}+1\right)=1\)

==== 1

GV
27 tháng 9 2017 lúc 14:15

Bạn tham khảo cách làm của bạn Thắng Nguyễn ở đây nhé: 

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath

Lê Nam
Xem chi tiết
pham thi thu trang
29 tháng 9 2017 lúc 6:40

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

alibaba nguyễn
29 tháng 9 2017 lúc 13:58

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

alibaba nguyễn
29 tháng 9 2017 lúc 14:06

3/ \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)

\(=\sqrt{\frac{\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(a-b\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)

\(=\sqrt{\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)

\(=|\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}|\) là số hữu tỉ

Nguyễn Mai
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2018 lúc 16:45

Từ đề bài

 \(\Rightarrow\left(x+\sqrt{x^2+2017}\right)\left(\sqrt{x^2+2017}-x\right)\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)

\(\Leftrightarrow\left(2017+x^2-x^2\right)\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)

\(\Leftrightarrow2017\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)

\(\Leftrightarrow x+y=\sqrt{x^2+2017}-\sqrt{y^2+2017}\)

Tương tự ta cũng có \(x+y=\sqrt{y^2+2017}-\sqrt{x^2+2017}\)

\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Không Tên
18 tháng 7 2018 lúc 19:35

cách khác nhé. cũng gần giống cách của bạn Đinh Đức Hùng, bạn tham khảo:

           \(\left(x+\sqrt{x^2+2017}\right)\left(y+\sqrt{y^2+2017}\right)=2017\)

Ta có:    \(\left(x+\sqrt{x^2+2017}\right)\left(\sqrt{x^2+2017}-x\right)=2017\)

              \(\left(y+\sqrt{y^2+2017}\right)\left(\sqrt{y^2+2017}-y\right)=2017\)

Kết hợp với giả thiết ta được:

                 \(\sqrt{x^2+2017}-x=y+\sqrt{y^2+2017}\)

               \(\sqrt{y^2+2017}-y=x+\sqrt{x^2+2017}\)

Cộng theo vế ta được:          

              \(-\left(x+y\right)=x+y\)

\(\Rightarrow\)\(S=x+y=0\)

Mi Trần
Xem chi tiết
Nguyên
10 tháng 8 2016 lúc 7:56

bài đó nhân liên hợp là ra

GV
27 tháng 9 2017 lúc 14:12

Bạn tham khảo cách làm của bạn Thắng Nguyễn ở đây nhé

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath

lê thị thu huyền
Xem chi tiết
GV
27 tháng 9 2017 lúc 14:10

Bạn tham khảo bài làm của bạn Thắng Nguyễn ở đây nhé:

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath

vietdat vietdat
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 9 2019 lúc 13:40

nhầm đề ak

DƯƠNG PHAN KHÁNH DƯƠNG
1 tháng 9 2019 lúc 14:11

Xin phép được sủa đề một chút nhé :)

\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)

\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)

\(=2\left(xy+yz+zx\right)=4034\)

Nguyễn Trọng Kiên
Xem chi tiết
Mai Thanh Tâm
Xem chi tiết
TFBoys
29 tháng 7 2017 lúc 22:18
Amar Vaner
5 tháng 11 2018 lúc 20:43

Ta có: \(\left(x+\sqrt[]{x^2+2017}\right)\left(x-\sqrt[]{x^2+2017}\right)=x^2-x^2-2017=-2017\)

\(\left(x+\sqrt[]{x^2+2017}\right)\left(y+\sqrt[]{y^2+2017}=2017\right)\)

Nên \(\sqrt[]{x^2+2017}-x=y+\sqrt[]{y^2+2017}\) (1)

Chứng minh tương tư: \(\sqrt[]{y^2+2017}-y=x+\sqrt[]{x^2+2017}\) (2)

Cộng hai vế của (1) và (2) \(\Rightarrow-x-y=x+y\Rightarrow-2\left(x+y\right)=0\Rightarrow S=x+y=0\)

Dũng Nguyễn Tiến
Xem chi tiết
Mỹ Duyên
25 tháng 6 2017 lúc 16:06

Ta có:

+) \(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

<=> \(y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)

<=> \(x+y=\sqrt{x^2+1}-\sqrt{y^2-1}\) (1)

+) \(\left(y+\sqrt{y^2+1}\right)\left(\sqrt{y^2+1}-y\right)=y^2+1-y^2=1\)

<=> \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)

<=> \(x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\) (2)

Cộng (1) và (2) vế theo vế ta được:

\(2\left(x+y\right)=0\) <=> \(x+y=0\) <=> \(x=-y\)

Thay \(x=-y\) vào \(x^{2017}+y^{2017}\) ta có:

A = \(\left(-y\right)^{2017}+y^{2017}=0\)