xy +\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\) =\(\sqrt{2017}\) . Tính giá trị của BT : A=\(x\sqrt{y^2+1}+y\sqrt{x^2+1}\)
Bài 1 : NĂNG KHIẾU 2016-2017
A) Tính S=a+b biết a;b>0, a \(\ne\)b và \(\left(\dfrac{a\left(a-4b\right)+b\left(b+2a\right)}{a+b}\right):\left[\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\right]=2016\)
B) Giải: \(x\sqrt{x+5}=2x^2-5x\left(1\right)và\left\{{}\begin{matrix}\left(\sqrt{y}+x-3\right)\left(y+\sqrt{x}\right)=0\\x^2+y=5\end{matrix}\right.\)
B1
a,cho \(\left(x+\sqrt{2017+x^2}\right).\left(y+\sqrt{2017+y^2}\right)=2017\)
Tính P=2019x+2019y+2020
b,Cho a,b,c là 3 số dương tm:a+b+c=3
Tìm min P=\(\frac{1}{a^2+a}+\frac{1}{b^2+b}+\frac{1}{c^2+c}\)
Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\). Tính giá trị của \(\left(x+y\right)\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
Tính \(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)+\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)+\left(1+y^2\right)}{1+z^2}}\)
Cho \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính giá trị của S biết \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
Bài 2: Cho: \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính giá trị của S biết \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)