Ta có: \(\left(x+\sqrt[]{x^2+2017}\right)\left(x-\sqrt[]{x^2+2017}\right)=x^2-x^2-2017=-2017\)
Mà \(\left(x+\sqrt[]{x^2+2017}\right)\left(y+\sqrt[]{y^2+2017}=2017\right)\)
Nên \(\sqrt[]{x^2+2017}-x=y+\sqrt[]{y^2+2017}\) (1)
Chứng minh tương tư: \(\sqrt[]{y^2+2017}-y=x+\sqrt[]{x^2+2017}\) (2)
Cộng hai vế của (1) và (2) \(\Rightarrow-x-y=x+y\Rightarrow-2\left(x+y\right)=0\Rightarrow S=x+y=0\)