Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thi Lan Anh
Xem chi tiết
Ngọc Nhi
Xem chi tiết
Akai Haruma
8 tháng 3 2018 lúc 0:26

Lời giải:

câu c)

Ta có: \(\frac{HD}{AD}=\frac{HD.BC}{AD.BC}=\frac{2S_{BHC}}{2S_{ABC}}=\frac{S_{HBC}}{S_{ABC}}\)

\(\frac{HE}{BE}=\frac{HE.AC}{BE.AC}=\frac{2S_{AHC}}{2S_{ABC}}=\frac{S_{AHC}}{S_{ABC}}\)

\(\frac{HF}{CF}=\frac{HF.AB}{CF.AB}=\frac{2S_{AHB}}{2S_{ABC}}=\frac{S_{AHB}}{S_{ABC}}\)

Cộng theo vế các đẳng thức vừa thu được:

\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Ta có đpcm.

Phan Hải Đăng
Xem chi tiết
Phan Hải Đăng
25 tháng 1 2021 lúc 22:05

I là trung điểm BC nha

 

Lê Hải Dương
Xem chi tiết
phantrungkien
16 tháng 3 2017 lúc 19:49

k mink di mink giai cho de lam

kiều anh nguyễn thị
Xem chi tiết

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(AE\cdot AC=AB\cdot AF\)

Nguyễn Hán Hướng Minh
Xem chi tiết
Nhật Hạ
9 tháng 6 2020 lúc 18:00

a, Xét △ABE vuông tại E và △ACF vuông tại F

Có: ∠BAC là góc chung

=> △ABE ᔕ △ACF (g.g)

b, Xét △HFB vuông tại F và △HEC vuông tại E

Có: ∠FHB = ∠EHC (2 góc đối đỉnh)

=> △HFB = △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB

c, Vì △ABE ᔕ △ACF (cmt)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AF}\)\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AF}\)

Xét △ABC và △AEF 

Có: \(\frac{AB}{AE}=\frac{AC}{AF}\)

        ∠BAC là góc chung

=> △ABC ᔕ △AEF (c.g.c)

=> ∠ABC = ∠AEF

d, Xét △BEC vuông tại E và △ADC vuông tại D

Có: ∠ACB là góc chung

=> △BEC ᔕ △ADC (g.g)

\(\Rightarrow\frac{BC}{AC}=\frac{EC}{DC}\)\(\Rightarrow\frac{BC}{EC}=\frac{AC}{DC}\)

Xét △ACB và △DCE

Có: \(\frac{BC}{EC}=\frac{AC}{DC}\)

       ∠ACB là góc chung

=> △ACB ᔕ △DCE (c.g.c)

=> ∠ABC = ∠DEC 

Mà ∠ABC = ∠AEF (cmt)

=>  ∠DEC = ∠AEF

Ta có: \(\hept{\begin{cases}\widehat{AEF}+\widehat{FEB}=\widehat{AEB}\\\widehat{CED}+\widehat{DEB}=\widehat{CEB}\end{cases}}\Rightarrow\hept{\begin{cases}\widehat{AEF}+\widehat{FEB}=90^o\\\widehat{CED}+\widehat{DEB}=90^o\end{cases}}\Rightarrow\widehat{FEB}=\widehat{DEB}\)

=> EB là phân giác \(\widehat{FED}\)

Khách vãng lai đã xóa
Đức Đặng Minh
23 tháng 9 2023 lúc 16:23

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

Le Minh Hieu
Xem chi tiết
Nhẻm Nhuý
Xem chi tiết
Đức Đặng Minh
23 tháng 9 2023 lúc 16:23

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

Đào Thị Hoàng Yến
Xem chi tiết
Akai Haruma
31 tháng 12 2018 lúc 23:33

Lời giải:

Ta có:

\(\widehat{MBD}=\widehat{MBC}=\widehat{MAC}\) (góc nội tiếp cùng chắn cung $MC$)

\(\widehat{MAC}=\widehat{EBC}=\widehat{HBD}\) (đều \(=90^0-\widehat{C}\) )

\(\Rightarrow \widehat{MBD}=\widehat{HBD}\)

Xét tam giác $MBD$ và $HBD$ có:

\(\widehat{MBD}=\widehat{HBD}\) (cmt)

\(\widehat{MDB}=\widehat{HDB}=90^0\)

\(\Rightarrow \triangle MBD\sim \triangle HBD(g.g)\)

\(\Rightarrow \frac{MD}{HD}=\frac{BD}{BD}=1\Rightarrow MD=HD\)

Vậy $BC$ vừa vuông góc, vừa đi qua trung điểm $D$ của $HM$

Do đó $BC$ là đường trung trực của $HM$ hay $H,M$ đối xứng nhau qua $BC$ (đpcm)

Akai Haruma
31 tháng 12 2018 lúc 23:37

Hình vẽ:

Violympic toán 9