Cho tam giác nhọn ABC có 3 đường cao AD,BE,CF cắt nhau tại H.
CM: a/ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
b/ H là giao điểm các đường phân giác tam giác DEF
1) Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau ở H. CMR HD/AD + HE/BE + HF/CF = 1
2)Tam giác ABC , D là trung điểm của AB . Vẽ DH vuông với BC , H thuộc BC. CMR S tam giác ABC =DH.BC
Cho tam giác ABC có 3 đường cao AD, BE,CF giao nhau tại H. Chứng minh rằng:
a) ΔAEB∼ΔAFC
b)ΔABC∼ΔAEF
c) \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)(Cần mỗi ý c nha)
Lời giải:
câu c)
Ta có: \(\frac{HD}{AD}=\frac{HD.BC}{AD.BC}=\frac{2S_{BHC}}{2S_{ABC}}=\frac{S_{HBC}}{S_{ABC}}\)
\(\frac{HE}{BE}=\frac{HE.AC}{BE.AC}=\frac{2S_{AHC}}{2S_{ABC}}=\frac{S_{AHC}}{S_{ABC}}\)
\(\frac{HF}{CF}=\frac{HF.AB}{CF.AB}=\frac{2S_{AHB}}{2S_{ABC}}=\frac{S_{AHB}}{S_{ABC}}\)
Cộng theo vế các đẳng thức vừa thu được:
\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Ta có đpcm.
Bài 9 : Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Vẽ 2 đường cao BE và CF của tam giác ABC cắt nhau tại H .Đường tròn tạm O , đường kính CH cắt BC tại K . Các tiếp tuyến tại E và C của (O) cắt nhau tại M . Chứng minh :
1/Tứ giác OEMC , BFEC nội tiếp được
2/HF.HC=HB.HE
3/3 điểm A,H,K thẳng hàng và I,O,M thẳng hàng
4/ 5 điểm E,F,K,I,O cùng thuộc 1 đường tròn
5/Kẻ tiếp tuyến BT đến O ( T là tiếp điểm , T thuộc cung nhỏ KC ) ,FT cắt (O) tại G , EG cắt AB tại S .Chứng minh : tứ giác SBKT nội tiếp
6/ Chứng tỏ : 3 đường thẳng BM,FC,AT đồng quy tại 1 điểm
Cho tam giác ABC có 3 góc nhọn . Có đường cao AD, BE, CF cắt nhau tại H . Chứng minh
a/ BF.BA+CE.CA=BC^2
b/ AE.BC=AB.EF
cho tam giác ABC nhọn (AB<AC), có đường cao BE, CF cắt nhau tại H. chứng minh: a) tam giác FHB đồng dạng tam giác EHC b) AF.AB=AE.AC
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(AE\cdot AC=AB\cdot AF\)
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a, Chứng minh: \(\Delta ABE\)đồng dạng với \(\Delta ACF\)
b, Chứng minh: HE.HB=HC.HF
c, Chứng minh: góc AEF= góc ABC
d, Chứng minh EB là tia phân giác của góc DEF
a, Xét △ABE vuông tại E và △ACF vuông tại F
Có: ∠BAC là góc chung
=> △ABE ᔕ △ACF (g.g)
b, Xét △HFB vuông tại F và △HEC vuông tại E
Có: ∠FHB = ∠EHC (2 góc đối đỉnh)
=> △HFB = △HEC (g.g)
\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)
=> HF . HC = HE . HB
c, Vì △ABE ᔕ △ACF (cmt)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AF}\)\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AF}\)
Xét △ABC và △AEF
Có: \(\frac{AB}{AE}=\frac{AC}{AF}\)
∠BAC là góc chung
=> △ABC ᔕ △AEF (c.g.c)
=> ∠ABC = ∠AEF
d, Xét △BEC vuông tại E và △ADC vuông tại D
Có: ∠ACB là góc chung
=> △BEC ᔕ △ADC (g.g)
\(\Rightarrow\frac{BC}{AC}=\frac{EC}{DC}\)\(\Rightarrow\frac{BC}{EC}=\frac{AC}{DC}\)
Xét △ACB và △DCE
Có: \(\frac{BC}{EC}=\frac{AC}{DC}\)
∠ACB là góc chung
=> △ACB ᔕ △DCE (c.g.c)
=> ∠ABC = ∠DEC
Mà ∠ABC = ∠AEF (cmt)
=> ∠DEC = ∠AEF
Ta có: \(\hept{\begin{cases}\widehat{AEF}+\widehat{FEB}=\widehat{AEB}\\\widehat{CED}+\widehat{DEB}=\widehat{CEB}\end{cases}}\Rightarrow\hept{\begin{cases}\widehat{AEF}+\widehat{FEB}=90^o\\\widehat{CED}+\widehat{DEB}=90^o\end{cases}}\Rightarrow\widehat{FEB}=\widehat{DEB}\)
=> EB là phân giác \(\widehat{FED}\)
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Cho tam giác ABC nhọn , các đường cao AD , BE , CF cắt nhau tại H . Gọi I , K theo thứ tự là hình chiuế của B , C trên EF . Chứng minh : DE + DF = IK .
Cho tam giác ABC nhọn có 3 đường cao AD, BE,CF. Cm tam giác DEF đồng dạng ABC
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Cho tam giác ABC có 3 gọc nhọn nội tiếp (O). Các đường cao AD,BE,CF cắt nhau tại h , cắt (O) lần lượt tại M,N,P
CMR : H và M đối xưng quá BC
Lời giải:
Ta có:
\(\widehat{MBD}=\widehat{MBC}=\widehat{MAC}\) (góc nội tiếp cùng chắn cung $MC$)
Mà \(\widehat{MAC}=\widehat{EBC}=\widehat{HBD}\) (đều \(=90^0-\widehat{C}\) )
\(\Rightarrow \widehat{MBD}=\widehat{HBD}\)
Xét tam giác $MBD$ và $HBD$ có:
\(\widehat{MBD}=\widehat{HBD}\) (cmt)
\(\widehat{MDB}=\widehat{HDB}=90^0\)
\(\Rightarrow \triangle MBD\sim \triangle HBD(g.g)\)
\(\Rightarrow \frac{MD}{HD}=\frac{BD}{BD}=1\Rightarrow MD=HD\)
Vậy $BC$ vừa vuông góc, vừa đi qua trung điểm $D$ của $HM$
Do đó $BC$ là đường trung trực của $HM$ hay $H,M$ đối xứng nhau qua $BC$ (đpcm)