So sánh
A=\(\dfrac{2011}{2014}\)và B=\(\dfrac{2014}{2017}\)
so sánh
a)\(A=\dfrac{-2015}{2015.2016}\) và \(B=\dfrac{-2014}{2014.2015}\) b)A = \(\dfrac{10^{2009}+1}{10^{2010}+1}\) và \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
A=-2015/2015x2016
A=-1/2016
B=-2014/2014x2015
B=-1/2015
vi 2016>2015,-1/2016>-1/2015
vay A>B
b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)
Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)
Ta có: \(10^{2010}+1< 10^{2011}+1\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)
\(\Leftrightarrow10A>10B\)
hay A>B
Không tính kết quả, lý luận và so sánh: A=2011 x 2017 B= 2014 x 2014
A = 2011x2017 = 2011x( 2014 +3) =2011x2014 + 2011 x3
B= 2014x2014 = 2014 x(2011 + 3) = 2014 x 2011 + 2014 x3 = 2011 x 2014 + 2014 x3
Vì 2011x3 < 2014x3
=> A < B
So sánh
A=\(\frac{2011}{2014}\)VÀ B=\(\frac{2014}{2017}\)
Ta có:
\(\frac{2011}{2014}+\frac{3}{2014}=1\)
\(\frac{2014}{2017}+\frac{3}{2017}=1\)
Mà \(\frac{3}{2014}>\frac{3}{2017}\)
nên \(\frac{2011}{2014}< \frac{2014}{2017}\)
1. Cho A = \(\dfrac{10^{2013}+1}{10^{2014}+1}\) và B = \(\dfrac{10^{2014}+1}{10^{2015}+1}\). Hãy so sánh A và B
2. so sánh ; 2\(^{332}\) và 3\(^{223}\)
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
Cho A : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
B :\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
So sánh A và B
So sánh A = \(\dfrac{10^{2014}+2016}{10^{2015}+2016}\) và B = \(\dfrac{10^{2015}+2016}{10^{2016}+2016}\) giúp mình nhanh với
\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)
\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)
mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)
nên A>B
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026}\)và \(B=1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}\)So sánh với \(1\dfrac{2013}{2014}\)
Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`
Không quy đồng, hãy so sánh: a)2011/2014 và 2014 /2017 b)13/27 và 27/53 c) 11/15 và 13/17
(1-3/2014)< (1-3/2017) => 2011/2014<2014/2017 13/27<13/26=1/2 27/53>27/54=1/2 Vì 13/27<1/2<27/53 nên 13/27<27/53 C)phần bù đơn vị 11/15<13/17
Không quy đồng, hãy so sánh:
a)2011/2014 và 2014 /2017
b)13/27 và 27/53
c) 11/15 và 13/17
(1-3/2014)< (1-3/2017)
=> 2011/2014<2014/2017
13/27<13/26=1/2
27/53>27/54=1/2
Vì 13/27<1/2<27/53 nên 13/27<27/53
c)phần bù đơn vị 11/15<13/17