\(\sqrt{\dfrac{1}{9}+\dfrac{1}{16}}\) bằng :
(A) \(\dfrac{1}{2}\) (B) \(\dfrac{1}{4}\) (C) \(\dfrac{5}{12}\) (D) \(\dfrac{2}{7}\)
Hãy chọn đáp án đúng ?
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
Rút gọn các biểu thức sau
a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\) b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\) c) \(\sqrt[3]{\dfrac{3}{4}}.\sqrt[3]{\dfrac{9}{16}}\)
d) \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\) e) \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{12-3\sqrt{7}}-\sqrt{2}\cdot\sqrt{12+3\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{21}\right)^2-2\cdot\sqrt{21}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}\right)^2+2\cdot\sqrt{21}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{21}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}+\sqrt{3}\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}\)
\(=\dfrac{-2\sqrt{3}}{\sqrt{2}}\)
\(=-\sqrt{6}\)
c) \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}\)
\(=\sqrt[3]{\dfrac{3\cdot9}{4\cdot16}}\)
\(=\sqrt[3]{\left(\dfrac{3}{4}\right)^3}\)
\(=\dfrac{3}{4}\)
d) \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\)
\(=\sqrt[3]{\dfrac{54}{-2}}\)
\(=\sqrt[3]{-27}\)
\(=\sqrt[3]{\left(-3\right)^3}\)
\(=-3\)
a: Sửa đề: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}\cdot\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)
\(=\dfrac{\sqrt{6}+1}{3\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)
\(=\dfrac{2\sqrt{2}\left(\sqrt{6}+1\right)+\sqrt{3}-\sqrt{2}}{12}\)
\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)
\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)
e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{2\sqrt{2}+3\sqrt{2}+6+1}-\sqrt[3]{2\sqrt{2}-3\sqrt{2}+6-1}\)
\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)
\(=\sqrt{2}+1-\left(\sqrt{2}-1\right)\)
\(=\sqrt{2}+1-\sqrt{2}+1=2\)
a) \(4.\left(-\dfrac{1}{2}\right)^3\)\(-2.\left(-\dfrac{1}{2}\right)^2\)+\(3.\left(-\dfrac{1}{2}\right)\)+1
b) \(8.\sqrt{9}\)\(-\sqrt{64}\)
c) \(\sqrt{\dfrac{9}{16}}\)\(+\dfrac{25}{46}\)\(:\dfrac{5}{23}\)\(-\dfrac{7}{4}\)
đung cho 5 sao
a) \(4.\left(-\dfrac{1}{2}\right)^3-2.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)+1\)
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}+3.\left(-\dfrac{1}{2}\right)+1\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1\)
\(=-\dfrac{3}{2}\)
b) \(8.\sqrt{9}-\sqrt{64}\)
\(=8.3-8\)
\(=24-8\)
\(=16\)
c) \(\sqrt{\dfrac{9}{16}}+\dfrac{25}{46}:\dfrac{5}{23}-\dfrac{7}{4}\)
\(=\dfrac{3}{4}+\dfrac{5}{2}-\dfrac{7}{4}\)
\(=-1+\dfrac{5}{2}\)
\(=\dfrac{3}{2}\)
\(a,\dfrac{3}{5}+\dfrac{-5}{9}\)
\(b,\dfrac{1}{3}+\dfrac{-4}{3};\dfrac{4}{7}\)
\(c,-\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}\)
\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)
\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)
Bài 1. Thực hiện phép tính:
a) |5.0,6+\(\dfrac{2}{3}\)|- \(\dfrac{1}{3}\)
b)(0,25 - 1\(\dfrac{1}{4}\)) : 5 - \(\dfrac{1}{5}\).(-3)\(^2\)
c)\(\dfrac{14}{17}.\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
d)\(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
e)\(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)
\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)
b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)
\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)
\(=-10\cdot\dfrac{1}{5}=-2\)
c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)
\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)
d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)
\(=\dfrac{16}{16}-\dfrac{25}{25}\)
\(=1-1=0\)
e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)
\(=\dfrac{5}{6}+\dfrac{4}{3}\)
\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)
\(A.\dfrac{-15}{28}x\dfrac{7}{25}\\ B.\dfrac{-5}{14}x\dfrac{7}{-3}\\ C.\dfrac{-1}{5}-\dfrac{7}{15}x\dfrac{9}{35}\\ D.\dfrac{-3}{4}-(\dfrac{-1}{2})^2\\ E.\dfrac{-4}{5}-\dfrac{-4}{5}x\dfrac{15}{16}\\F.(\dfrac{3}{4}+\dfrac{-7}{2})x(\dfrac{2}{11}+\dfrac{12}{22})\)
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
Thực hiện phép tính
a, \(\dfrac{5}{16}\)+\(\dfrac{1}{12}-\dfrac{7}{8}\)
b,\(\dfrac{5}{17}+\dfrac{8}{9}+\dfrac{17}{17}-\)0,7\(-1\dfrac{8}{9}\)
c,\((1-\dfrac{1}{2})^2-(-\dfrac{1}{3})^2:\dfrac{1}{3}+\dfrac{\sqrt{64}}{4}\)
d,\(15\dfrac{1}{4}:(-\dfrac{5}{7})-25\dfrac{1}{4}:(-\dfrac{5}{7})\)
làm đầy đủ theo các bước nhé
Tìm x biết :
a) \(^{\dfrac{4}{9}+x=\dfrac{5}{3}}\)
b)\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
c) \(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
d)\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
a)
\(\frac{4}{9} + x = \frac{5}{3}\)
=> \(x = \frac{5}{3}-\frac{4}{9}\)
=> \(x = \) \(\frac{11}{9}\)
Vậy \(x = \dfrac{11}{9}\)
b)
\(\dfrac{3}{4} .x = \dfrac{-1}{2}\)
=> \(x = \dfrac{-1}{2} : \dfrac{3}{4}\)
=> \(x = \dfrac{-2}{3}\)
Vậy \(x = \dfrac{-2}{3}\)
c)
\( \dfrac{3}{7}+ \dfrac{5}{7}:x = \dfrac{1}{3}\)
=> \(\dfrac{5}{7}:x = \dfrac{1}{3}-\) \( \dfrac{3}{7}\)
=> \(\dfrac{5}{7}:x = \dfrac{-2}{21}\)
=> \(x = \dfrac{5}{7}:\dfrac{-2}{21}\)
=> \(x = \dfrac{-15}{2}\)
Vậy \(x = \dfrac{-15}{2}\)
d)
\(3\dfrac{1}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \(\dfrac{13}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \( |2x - \dfrac{5}{12} | =\dfrac{13}{4} : \dfrac{39}{16}\)
=> \(|2x-\dfrac{5}{12} |= \dfrac{4}{3}\)
=> \(\left[\begin{matrix} 2x - \dfrac{5}{12} = \dfrac{4}{3}\\ 2x - \dfrac{5}{12} = \dfrac{4}{3}\end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{-4}{3}+\dfrac{5}{12}\\ 2x = \dfrac{-4}{3}+\dfrac{5}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{7}{4}\\ 2x = \dfrac{-11}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} x = \dfrac{7}{8}\\ x = \dfrac{-11}{24} \end{matrix}\right.\)
Vậy \(x \in \) { \(\dfrac{7}{8} ; \dfrac{-11}{24}\) }
Câu 1: Thực hiện phép tính
a, \(\dfrac{7}{9}-\dfrac{16}{9}\)
b, \(\dfrac{2}{-15}+\dfrac{7}{10}\)
c, \(\left(4\dfrac{2}{3}-4\dfrac{3}{4}\right):\dfrac{-5}{12}-\dfrac{4}{5}\)
d, \(\dfrac{-141}{157}.\dfrac{23}{59}-\dfrac{141}{157}.\dfrac{36}{59}+\dfrac{16}{-157}\)
a. 7/9 - 16/9 = -9/9 = -1
b. 2/-15 + 7/10 = 17/30
c. (4 2/3 - 4 3/4) : -5/12 - 4/5
= (14/3 - 19/4) : (-5/12) - 4/5
= -1/12 : (-5/12) - 4/5
= 1/5 - 4/5
= -3/5