so sánh A= \(\dfrac{2015}{2015^m}\)+ và B= \(\dfrac{2013}{2015^m}\)+ \(\dfrac{2017}{2015^n}\) ( m,n là tập hợp N* )
so sánh A =2015:2015^m+ 2015:2015^n và B=2013:2015^m + 2017: 2015^n (n và m là các số tự nhiên khác 0)
So sánh
M = \(\dfrac{2017^{2015}+1}{2017^{2015}-1}\) và N = \(\dfrac{2017^{2015}-5}{2017^{2015}-3}\)
Ta có:
M=\(\dfrac{2017^{2015}+1}{2017^{2015}-1}=\dfrac{2017^{2015}-1+2}{2017^{2015}-1}=1+\dfrac{2}{2017^{2015}-1}>1\left(1\right)\)
N=\(\dfrac{2017^{2015}-5}{2017^{2015}-3}=\dfrac{2017^{2015}-3-2}{2017^{2015}-3}=1-\dfrac{2}{2017^{2015}-3}< 1\left(2\right)\)
Từ (1) và (2) suy ra M>1>N
Vậy M>N.
Ta có :
\(\dfrac{2017^{2015}+1}{2017^{2015}-1}>\dfrac{2017^{2015}}{2017^{2015}}>\dfrac{2017^{2015}-5}{2017^{2015}-3}\)
Tick mình nha bạn hiền.
So sánh A= \(\frac{2015}{2015^m}\)+ \(\frac{2015}{2015^n}\) và B= \(\frac{2013}{2015^m}\)+\(\frac{2017}{2015^n}\) (m,n \(\in\)N*)
Cho N=\(\dfrac{-7}{10^{2015}}\)+\(\dfrac{-15}{10^{2006}}\)và M=\(\dfrac{-15}{10^{2005}}\)+\(\dfrac{-7}{10^{2006}}\)
So sánh M và N (heo mì) TvT
Ta có :
\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2006}}\)
\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2005}}\)
Lại có :
\(-\dfrac{8}{10^{2006}}>\dfrac{-8}{10^{2005}}\Leftrightarrow M>N\)
Cho a,b,c thỏa mãn \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\) và \(a^{2013}+b^{2013}+c^{2013}=1\)
Tính giả trị biểu thức \(M=\dfrac{1}{a^{2015}}+\dfrac{1}{b^{2015}}+\dfrac{1}{c^{2015}}\)
Ta có:
\(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)
\(\Leftrightarrow\left(ab+ac\right)\left(b+c\right)+b\left(c^2+2ac+a^2\right)+c\left(a^2+2ab+b^2\right)=4abc\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc^2+2abc+ba^2+ca^2+2abc+cb^2-4abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+\left(bc^2+cb^2\right)+\left(ba^2+ca^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[b\left(c+a\right)+a\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\c+a=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}b=-c\\a=-b\\c=-a\end{matrix}\right.\)
Ta lại có:
\(a^{2013}+b^{2013}+c^{2013}=1\)
Với : \(b=-c\Leftrightarrow a^{2013}-c^{2013}+c^{2013}=1\Leftrightarrow a=1\)
\(\Rightarrow M=\dfrac{1}{a^{2015}}+\dfrac{1}{b^{2015}}+\dfrac{1}{c^{2015}}=\dfrac{1}{1}+\dfrac{-1}{c^{2015}}+\dfrac{1}{c^{2015}}=1\)
Mà do \(a,b,c\) bình đẳng nên với trường hợp nào đều là \(M=1\)
Tập hợp các giá trị của x thỏa mãn \(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(pt\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Dễ thấy: \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\dfrac{x+1}{2015}+1+\dfrac{x+1}{2014}+1-\dfrac{x+3}{2013}-1-\dfrac{x+4}{2012}-1=0\)
\(\dfrac{x+1+2015}{2015}+\dfrac{x+2+2014}{2014}-\dfrac{x+3+2013}{2013}-\dfrac{x+4+2012}{2012}=0\)
\(\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}< 0\)
Nên để:\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Thì \(x+2016=0\Leftrightarrow x=-2016\)
\(B=\frac{215-2}{2015^m}+\frac{2015+2}{2015^n}=\frac{2015}{2015^m}-\frac{2}{2015^m}+\frac{2015}{2015^n}+\frac{2}{2015^n}=A-2\left(\frac{1}{2015^m}-\frac{1}{2015^n}\right)\)
+ Nếu \(m>n\Rightarrow2015^m>2015^n\Rightarrow\frac{2}{2015^m}<\frac{2}{2015^n}\Rightarrow\frac{2}{2015^m}-\frac{2}{2015^n}<0\Rightarrow A-\left(\frac{2}{2015^m}-\frac{2}{2015^n}\right)>A\)
=> A<B
+ Nếu
m<n làm tương tự => A>B
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
Tập hợp các giá trị của x thỏa mãn là
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Mà \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)
Vậy x = -2016
1) So sánh 2 phân số:
a) \(\dfrac{35}{37}\) và \(\dfrac{-35359}{-37379}\)
b) \(\dfrac{61}{77}\) và \(\dfrac{715}{775}\)
Bài 2:Tìm tập hợp A các số nguyên x thỏa mãn:
a) \(\dfrac{3}{4}\) < x < \(\dfrac{-15}{4}\)
b) \(\dfrac{-7}{3}\) > x > \(\dfrac{-13}{4}\)
Bài 3: Chứng minh rằng:
\(\dfrac{2013}{2014}+\dfrac{2014}{2015}+\dfrac{2015}{2013}>3\)
Mấy bài dễ u tự giải quyết nha
3) \(\dfrac{2013}{2014}+\dfrac{2014}{2015}+\dfrac{2015}{2013}\)
\(=\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)+\left(1+\dfrac{2}{2013}\right)\)
\(=3+\dfrac{2}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\)
\(=3+\left(\dfrac{1}{2013}-\dfrac{1}{2014}\right)+\left(\dfrac{1}{2013}-\dfrac{1}{2015}\right)>3\)