Cho \(x>y>0\) chứng minh rằng:
\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+y^2}\)
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Bài 1:
a,Cho ba số x,y,z thoả mãn yz>0 . Chứng minh rằng : \(x^2+yz\ge2x\sqrt{yz}\)
b,Cho x,y,z thoả mãn x+y+z\(=3\). Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
Chứng minh rằng nếu (a2+b2)(x2+y2) = (ax+by)2 với x,y khác 0 thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow\) \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow\) \(a^2y^2+b^2x^2=2axby\)
\(\Leftrightarrow\) \(a^2y^2+b^2x^2-2axby=0\)
\(\Leftrightarrow\) \(\left(ay-bx\right)^2=0\)
\(\Leftrightarrow\) \(ay-bx=0\)
\(\Leftrightarrow\) \(ay=bx\)
\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)
Bài 1:
a, Cho ba số x,y,z đôi một khác nhau. Chứng minh rằng:
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
mình nghĩ ra cách này ko biết đúng hay sai, nhưng mình sẽ cm cho bạn xem trước cái này để mình đảo lại trong quá trình làm bài luôn cho đỡ mất thời gian
\(\dfrac{1}{x-y}-\dfrac{1}{x-z}=\dfrac{x-z-x+y}{\left(x-y\right)\left(x-z\right)}=\dfrac{\left(y-z\right)}{\left(x-y\right)\left(x-z\right)}\)
thế nên sẽ đảo ngược lại trong bài này, vây ta sẽ có
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{1}{x-y}-\dfrac{1}{x-z}\\ \dfrac{z-x}{\left(y-z\right)\left(x-y\right)}=\dfrac{1}{y-z}-\dfrac{1}{x-y}\\ \dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{1}{z-x}-\dfrac{1}{y-z}\)
thay vào đề bài ta được
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}\\ =\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{y-x}\\ =\dfrac{1}{x-y}+\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{y-z}+\dfrac{1}{z-x}+\dfrac{1}{z-x}\\ =\dfrac{2}{x-y}+\dfrac{2}{y-x}+\dfrac{2}{z-x}\left(đpcm\right)\)
vậy ...
mình nghĩ ra thì là như z, chúc may mắn :)
Cho x, y , z là các số thực dương thoả mãn \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=1\)
Chứng minh rằng \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
Đặt \(\dfrac{1}{x+1}=a,\dfrac{1}{y+1}=b,\dfrac{1}{z+1}=c\Rightarrow a,b,c>0;a+b+c=1.\)
\(x=\dfrac{1}{a}-1\)
Cần chứng minh: \(\sum\sqrt{\dfrac{1}{a}-1}\le\dfrac{3}{2}\sqrt{\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)}\)
Hay \(\sum\sqrt{\dfrac{1}{a}-\dfrac{1}{a+b+c}}\le\dfrac{3}{2}\sqrt{\prod\left(\dfrac{1}{a}-\dfrac{1}{a+b+c}\right)}\)
Hay là \(\sum\sqrt{\dfrac{b+c}{a\left(a+b+c\right)}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a\left(a+b+c\right)}}\)
Tương đương: \(\sum\sqrt{\dfrac{b+c}{a}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a}}\)
\(\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\ge\left[\sum\sqrt{\dfrac{b+c}{a}}\right]^2\)
Từ đây cần chứng minh:
\(\dfrac{9}{4}\prod\dfrac{\left(b+c\right)}{a}\ge\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\)
Còn lại bạn tự làm hoặc không để tối rảnh mình làm.
Do hoc24.vn không cho cập nhật câu trả lời nữa nên mình đăng tiếp:
Thực hiện thay thế \(\left(a,b,c\right)\rightarrow\left(s-a',s-b',s-c'\right)\) với $a',b',c'$ là độ dài ba cạnh của một tam giác.
Đặt $\left\{ \begin{array}{l}a' + b' + c' = 2s\\a'b' + b'c' + c'a' = {s^2} + 4Rr + {r^2}\\a'b'c' = 4sRr\end{array} \right.$
Bất đẳng thức quy về:
$${\dfrac { \left( 4\,R-24\,r \right) {s}^{4}+r \left( 72\,{R}^{2}+41\,Rr+8\,{r}^{2} \right) {s}^{2}+2\,{r}^{2} \left( 4\,R+r \right) ^{3}}{r{s}^{2} \left( 4\,{s}^{2}+r \left( 8\,R+r \right) \right) }}\geqslant 0$$
\( \Leftrightarrow \left( {4{\mkern 1mu} R - 24{\mkern 1mu} r} \right){s^4} + r\left( {72{\mkern 1mu} {R^2} + 41{\mkern 1mu} Rr + 8{\mkern 1mu} {r^2}} \right){s^2} + 2{\mkern 1mu} {r^2}{\left( {4{\mkern 1mu} R + r} \right)^3} \geqslant 0\)
Hay là \({s^2}\left( {R - 2{\mkern 1mu} r} \right)\left( {9{\mkern 1mu} {r^2} + 4{\mkern 1mu} {s^2}} \right) + r\left[ {10{\mkern 1mu} {s^2}\left( {4{\mkern 1mu} {R^2} + 4{\mkern 1mu} Rr + 3{\mkern 1mu} {r^2} - {s^2}} \right) + \left( {8{\mkern 1mu} Rr + 2{\mkern 1mu} {r^2} + 2{\mkern 1mu} {s^2}} \right)\left( {16{\mkern 1mu} {R^2} + 8{\mkern 1mu} Rr + {r^2} - 3{\mkern 1mu} {s^2}} \right)} \right] \geqslant 0\)
Đây là điều hiển nhiên.
Ngoài ra phương pháp SOS, SS cũng có thể sử dụng ở đây.
Cho xy≠0, chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)≥\(\dfrac{x}{y}+\dfrac{y}{x}\)
BĐT cần chứng minh tương đương:
\(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Ta có bất đẳng thức $a^2+b^2 \geq \dfrac{(a+b)^2}{2}
$⇔2.(a^2+b^2) \geq (a+b)^2$
$⇔(a-b)^2 \geq 0$ (đúng)
Áp dụng bất đẳng thức trên cho $\dfrac{x}{y}$ và $\dfrac{y}{x}$ có:
$\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} $
$\geq \dfrac{(\dfrac{x}{y}+\dfrac{y}{x})^2}{2}$
Hay $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})^2$
Áp dụng bất đẳng thức Cauchy (Cô-si) có:
$\dfrac{x}{y}+\dfrac{y}{x} \geq 2.\sqrt[]{\dfrac{x}{y}.\dfrac{y}{x}}=2$
Nên $(\dfrac{x}{y}+\dfrac{y}{x}).(\dfrac{x}{y}+\dfrac{y}{x}) \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Hay $ (\dfrac{x}{y}+\dfrac{y}{x})^2 \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Suy ra $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$
Hay $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})(đpcm)$
Dấu $=$ xảy ra $⇔x=y$
Chứng minh rằng:
Nếu \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cx\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\).
\(\text{Đặt }\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=k \Rightarrow\left\{{}\begin{matrix}a=kx\\b=ky\\c=kz\end{matrix}\right.\\\Rightarrow\left(ax+by+cz\right)^2=\left(kx^2+ky^2+kz^2\right)^2\\ =\left(kx^2+ky^2+kz^2\right)\left(kx^2+ky^2+kz^2\right)\\ =\left(x^2+y^2+z^2\right)\left(k^2x^2+k^2y^2+k^2z^2\right) \\ =\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\left(đpcm\right)\)
Cho \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) + \(\dfrac{1}{z}\) = 0; x + y + z = 0; xyz =1
Chứng minh rằng x6 + y6 + z6 = 0
Giúp em với, cảm ơn.
dùng hằng đẳng thức mở rộng nha pn!
chứng minh rằng 2*x^2+4*y^2+4*x*y-6*x+10>0 với mọi số thực x và y
\(A=2x^2+4y^2+4xy-6z+10\)
\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)
\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+1=1>0\)
Vậy ...