Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Homin
Xem chi tiết
Homin
13 tháng 12 2022 lúc 21:50

Cứu với ;-;

Dat
Xem chi tiết
Nguyễn Nhật Tiên Tiên
Xem chi tiết
Phạm Phương Anh
29 tháng 6 2017 lúc 15:28

Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow\) \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2=2axby\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2-2axby=0\)

\(\Leftrightarrow\) \(\left(ay-bx\right)^2=0\)

\(\Leftrightarrow\) \(ay-bx=0\)

\(\Leftrightarrow\) \(ay=bx\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

Mai Thị Phương Linh
Xem chi tiết
Lưu Hiền
21 tháng 3 2017 lúc 19:58

mình nghĩ ra cách này ko biết đúng hay sai, nhưng mình sẽ cm cho bạn xem trước cái này để mình đảo lại trong quá trình làm bài luôn cho đỡ mất thời gian

\(\dfrac{1}{x-y}-\dfrac{1}{x-z}=\dfrac{x-z-x+y}{\left(x-y\right)\left(x-z\right)}=\dfrac{\left(y-z\right)}{\left(x-y\right)\left(x-z\right)}\)

thế nên sẽ đảo ngược lại trong bài này, vây ta sẽ có

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{1}{x-y}-\dfrac{1}{x-z}\\ \dfrac{z-x}{\left(y-z\right)\left(x-y\right)}=\dfrac{1}{y-z}-\dfrac{1}{x-y}\\ \dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{1}{z-x}-\dfrac{1}{y-z}\)

thay vào đề bài ta được

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}\\ =\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{y-x}\\ =\dfrac{1}{x-y}+\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{y-z}+\dfrac{1}{z-x}+\dfrac{1}{z-x}\\ =\dfrac{2}{x-y}+\dfrac{2}{y-x}+\dfrac{2}{z-x}\left(đpcm\right)\)

vậy ...

mình nghĩ ra thì là như z, chúc may mắn :)

Ngọc Nhi
Xem chi tiết
tthnew
15 tháng 1 2021 lúc 16:57

Đặt \(\dfrac{1}{x+1}=a,\dfrac{1}{y+1}=b,\dfrac{1}{z+1}=c\Rightarrow a,b,c>0;a+b+c=1.\)

\(x=\dfrac{1}{a}-1\)

Cần chứng minh: \(\sum\sqrt{\dfrac{1}{a}-1}\le\dfrac{3}{2}\sqrt{\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)}\)

Hay \(\sum\sqrt{\dfrac{1}{a}-\dfrac{1}{a+b+c}}\le\dfrac{3}{2}\sqrt{\prod\left(\dfrac{1}{a}-\dfrac{1}{a+b+c}\right)}\)

Hay là \(\sum\sqrt{\dfrac{b+c}{a\left(a+b+c\right)}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a\left(a+b+c\right)}}\)

Tương đương: \(\sum\sqrt{\dfrac{b+c}{a}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a}}\)

\(\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\ge\left[\sum\sqrt{\dfrac{b+c}{a}}\right]^2\)

Từ đây cần chứng minh:

\(\dfrac{9}{4}\prod\dfrac{\left(b+c\right)}{a}\ge\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\)

Còn lại bạn tự làm hoặc không để tối rảnh mình làm.

 

tthnew
15 tháng 1 2021 lúc 17:53

Do hoc24.vn không cho cập nhật câu trả lời nữa nên mình đăng tiếp:

Thực hiện thay thế \(\left(a,b,c\right)\rightarrow\left(s-a',s-b',s-c'\right)\) với $a',b',c'$ là độ dài ba cạnh của một tam giác.

Đặt $\left\{ \begin{array}{l}a' + b' + c' = 2s\\a'b' + b'c' + c'a' = {s^2} + 4Rr + {r^2}\\a'b'c' = 4sRr\end{array} \right.$

Bất đẳng thức quy về: 

$${\dfrac { \left( 4\,R-24\,r \right) {s}^{4}+r \left( 72\,{R}^{2}+41\,Rr+8\,{r}^{2} \right) {s}^{2}+2\,{r}^{2} \left( 4\,R+r \right) ^{3}}{r{s}^{2} \left( 4\,{s}^{2}+r \left( 8\,R+r \right)  \right) }}\geqslant 0$$

\( \Leftrightarrow \left( {4{\mkern 1mu} R - 24{\mkern 1mu} r} \right){s^4} + r\left( {72{\mkern 1mu} {R^2} + 41{\mkern 1mu} Rr + 8{\mkern 1mu} {r^2}} \right){s^2} + 2{\mkern 1mu} {r^2}{\left( {4{\mkern 1mu} R + r} \right)^3} \geqslant 0\)

Hay là \({s^2}\left( {R - 2{\mkern 1mu} r} \right)\left( {9{\mkern 1mu} {r^2} + 4{\mkern 1mu} {s^2}} \right) + r\left[ {10{\mkern 1mu} {s^2}\left( {4{\mkern 1mu} {R^2} + 4{\mkern 1mu} Rr + 3{\mkern 1mu} {r^2} - {s^2}} \right) + \left( {8{\mkern 1mu} Rr + 2{\mkern 1mu} {r^2} + 2{\mkern 1mu} {s^2}} \right)\left( {16{\mkern 1mu} {R^2} + 8{\mkern 1mu} Rr + {r^2} - 3{\mkern 1mu} {s^2}} \right)} \right] \geqslant 0\)

Đây là điều hiển nhiên.

Ngoài ra phương pháp SOS, SS cũng có thể sử dụng ở đây.

 

Trần Thuận Ngân
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 17:07

BĐT cần chứng minh tương đương:

\(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

ntkhai0708
22 tháng 3 2021 lúc 17:11

Ta có bất đẳng thức $a^2+b^2 \geq \dfrac{(a+b)^2}{2}

$⇔2.(a^2+b^2) \geq (a+b)^2$

$⇔(a-b)^2 \geq 0$ (đúng)

Áp dụng bất đẳng thức trên cho $\dfrac{x}{y}$ và $\dfrac{y}{x}$ có:

$\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} $

$\geq \dfrac{(\dfrac{x}{y}+\dfrac{y}{x})^2}{2}$

Hay $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})^2$

Áp dụng bất đẳng thức Cauchy (Cô-si) có:

$\dfrac{x}{y}+\dfrac{y}{x} \geq 2.\sqrt[]{\dfrac{x}{y}.\dfrac{y}{x}}=2$

Nên $(\dfrac{x}{y}+\dfrac{y}{x}).(\dfrac{x}{y}+\dfrac{y}{x}) \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$

Hay $ (\dfrac{x}{y}+\dfrac{y}{x})^2  \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$

Suy ra $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$

Hay $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})(đpcm)$

Dấu $=$ xảy ra $⇔x=y$

Lâm Ánh Yên
Xem chi tiết
Trần Quốc Lộc
21 tháng 8 2018 lúc 10:05

\(\text{Đặt }\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=k \Rightarrow\left\{{}\begin{matrix}a=kx\\b=ky\\c=kz\end{matrix}\right.\\\Rightarrow\left(ax+by+cz\right)^2=\left(kx^2+ky^2+kz^2\right)^2\\ =\left(kx^2+ky^2+kz^2\right)\left(kx^2+ky^2+kz^2\right)\\ =\left(x^2+y^2+z^2\right)\left(k^2x^2+k^2y^2+k^2z^2\right) \\ =\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\left(đpcm\right)\)

Khánh Trần
Xem chi tiết
nguyễn thị thu thủy
15 tháng 12 2017 lúc 16:05

dùng hằng đẳng thức mở rộng nha pn!

Vũ Thị Thùy An
Xem chi tiết
Le Thi Khanh Huyen
14 tháng 12 2016 lúc 17:34

\(A=2x^2+4y^2+4xy-6z+10\)

\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)

   \(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+1=1>0\)

Vậy ...