tìm x
1/3 + 1//6 + 1/10 + . . . . +1/x^2/2=2017/2016
Câu1: tìm số nguyên x mà -35/6<x>-18/5
Câu2 : so sánh A=2015/2016+2016/2017 và B= 2015+2016/2016+2017
Câu3 : tìm số nguyên x biết rằng : 1/3+1/6+1/10...+2/x(x+1) =2007/2009
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
cau3:
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2007}{2009}\)
2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}\)-\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2009}\)
x+1=2009
x=2009-1
x=2008
Tìm x biết:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2016}{2017}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{2017}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2017}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1008}{2007}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4034}\)
\(\Leftrightarrow x+1=4034\)
\(\Leftrightarrow x=4033\)
Vậy x = 4033
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)
=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2016}{2017}\right)\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2016}{2017}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{1017}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2017}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2016}{2017}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1008}{2017}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1008}{2017}\)
=> \(\frac{1}{x+1}=\frac{1}{4034}\)
Vì 1 = 1
=> x + 1 = 4034
=> x = 4034 - 1
=> x = 4033
Lưu ý : Dấu "." là dấu nhân
Tìm x biết
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)
\(\Leftrightarrow\)\(x+1=2019\)
\(\Leftrightarrow\)\(x=2019-1\)
\(\Leftrightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
b1:thực hiện phép tính
1/2.1/3+1/3.1/4+...+1/8.1/9
b2:tìm x bt
1+1/3+1/6+1/10+...+1/x(x+1):2=1 và 2016/2017
Bài 1:
\(\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+....+\frac{1}{8}.\frac{1}{9}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=1\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{4033}{2017}\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4033}{4034}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4033}{4034}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4033}{4034}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{4033}{4034}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{4033}{4034}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4034}\)
\(\Rightarrow x+1=4034\)
\(\Rightarrow x=4034-1\)
\(\Rightarrow x=4033\)
Tính: S = 1 - 2 + 3 - 4+ ... + 197 -198 + 199 -200
Tính: P = (-1) + (-2) + (-3) + .... + (-99) + (-100)
Tìm các số nguyên x, biết:
a) x2 - 1 = -54 - 43 - 32 - (-6971) - (-20170)
b) 7(x-1) < 0 và x > -11
c) -10(x - 2016) - 7(x - 2016) - 6(x-2016) - 4(x -2016) - 3(x - 2016) = -30
Tìm giá trị nhỏ nhất hoặc lớn nhất nhất nếu có thể của các biểu thức sau
a,A=-1+2-3+4-5+6-...-2015+2016-|x-2017|
b,B=1-2+3-4+5-6+...+2015-2016+|2017-x|
c,C=10-(x+2)
nếu giải thì các cậu phải viết rõ ý a,b c ra nhé để mình còn biết
tìm x thuộc Z
a)1+2+3+.........+x=5050
b)1/2+1/6+........1x2+x=99/100
c)1/6+1/12+.......1/x2-x=59/100
d)x-2017+x-2016+.........+99+100=0
g)x-1+x-2+x-3+.......x-2017=0
ta có
1+2+3+.........+x=5050
=>\(\frac{x.\left(x+1\right)}{2}=5050\)
=>x.(x+1)=5050.2
=>x.(x+1)=10100
=>x.(x+1)=100.101
=>x=100
1. Tìm Min hoặc Max :
a) A = | x + 1| + 2016
b) B = 2017 - | 2x - 1/3|
c) C = | x + 1| + | y + 2| + 2016
d) D = -| x + 1/2| - | y - 1| +10
2. Tìm x, biết:
a) ( x+1)( y + 2) = 0
b) ( x + 2)( x - 3) > 0
c) ( x + 1/2) = 3
d) | x + 1| < 2016
e) | x - 1/2| > 5
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
a) ( x + 1 )( y + 2 ) = 0
\(\Rightarrow\) x + 1 = 0 hoặc y + 2 = 0
+) x + 1 = 0 \(\Rightarrow\) x = -1
+) y + 2 = 0 \(\Rightarrow\) y = -2
Vậy x = -1; y = -2
Bài 1: Tìm x,y biết:
a) 3-2*x = 3*(5-x)+4
b) 4-(7*x+2017)=6*(5-x)-2017
c) 15-x*(x+1)=4-x^2+2*x
d) -4*(x-5)+2016=3*(8-x)-(2*x-2016)
Ai nhanh mình like cho!