Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
★彡✿ทợท彡★
Xem chi tiết
Nguyễn Huy Tú
11 tháng 5 2022 lúc 20:44

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

Nguyễn Ngọc Huy Toàn
11 tháng 5 2022 lúc 20:45

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

lehoainam
11 tháng 5 2022 lúc 20:49

cc

Nguyễn Dương Ngọc Minh
Xem chi tiết

a: ĐKXĐ: n<>1

Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1

=>2n-2+1⋮n-1

=>1⋮n-1

=>n-1∈{1;-1}

=>n∈{2;0}

b: ĐKXĐ: n<>-1

Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1

=>3n+3+2⋮n+1

=>2⋮n+1

=>n+1∈{1;-1;2;-2}

=>n∈{0;-2;1;-3}

c: ĐKXĐ: n<>-3

Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3

=>4n+12-14⋮n+3

=>-14⋮n+3

=>n+3∈{1;-1;2;-2;7;-7;14;-14}

=>n∈{-2;-4;-1;-5;4;-10;11;-17}

d: ĐKXĐ: n<>-4/3

Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4

=>6n+8-12⋮3n+4

=>-12⋮3n+4

=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}

=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }

mà n là số nguyên

nên n∈{-1;-2;0}

e: ĐKXĐ: n<>1/2

Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1

=>2n+6⋮2n-1

=>2n-1+7⋮2n-1

=>7⋮2n-1

=>2n-1∈{1;-1;7;-7}

=>2n∈{2;0;8;-6}

=>n∈{1;0;4;-3}

f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên

g: ĐKXĐ: n<>1/3

Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1

=>6n+9⋮3n-1

=>6n-2+11⋮3n-1

=>11⋮3n-1

=>3n-1∈{1;-1;11;-11}

=>3n∈{2;0;12;-10}

=>n∈{2/3;0;4;-10/3}

mà n nguyên

nên n∈{0;4}

Chu Nhật Thành
Xem chi tiết

a: Gọi d=ƯCLN(n;2n+1)

=>n⋮d và 2n+1⋮d

=>2n⋮d và 2n+1⋮d

=>2n+1-2n⋮d

=>1⋮d

=>d=1

=>ƯCLN(n;2n+1)=1

=>\(\frac{n}{2n+1}\) là phân số tối giản

b: Gọi d=ƯCLN(n+5;n+6)

=>n+5⋮d và n+6⋮d

=>n+6-n-5⋮d

=>1⋮d

=>d=1

=>ƯCLN(n+5;n+6)=1

=>\(\frac{n+5}{n+6}\) là phân số tối giản

c: Gọi d=ƯCLN(n+1;2n+3)

=>n+1⋮d và 2n+3⋮d

=>2n+2⋮d và 2n+3⋮d

=>2n+3-2n-2⋮d

=>1⋮d

=>d=1

=>ƯCLN(n+1;2n+3)=1

=>\(\frac{n+1}{2n+3}\) là phân số tối giản

d: Gọi d=ƯCLN(3n+2;5n+3)

=>3n+2⋮d và 5n+3⋮d

=>15n+10⋮d và 15n+9⋮d

=>15n+10-15n-9⋮d

=>1⋮d

=>d=1

=>ƯCLN(3n+2;5n+3)=1

=>\(\frac{3n+2}{5n+3}\) là phân số tối giản

như quỳnh Lê ngọc
Xem chi tiết
loancute
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:46

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:55

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

Rhider
Xem chi tiết
Nguyễn Thái Dương
Xem chi tiết
%$H*&
1 tháng 5 2019 lúc 15:37

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

#Tiểu_Bối#
1 tháng 5 2019 lúc 15:40

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

%$H*&
1 tháng 5 2019 lúc 15:44

2) \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)

\(\Rightarrow\left(n+2\right)⋮\left(n-5\right)\)

\(\Rightarrow\left(n+2\right)-\left(n-5\right)⋮\left(n-5\right)\)

\(\Rightarrow7⋮n-5\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta xét bảng:

\(n-5\)\(-1\)\(1\)\(-7\)\(7\)
\(n\)\(4\)\(6\)\(-2\)\(12\)

Vậy\(n\in\left\{-2;4;6;12\right\}\)

Nguyễn Trần Cẩm Uyên
Xem chi tiết
Nguyễn Thanh Hằng
23 tháng 5 2017 lúc 19:11

Để phân số \(A=\dfrac{2n+5}{3n+1}\left(n\in Z\right)\) là số tự nhiên thì :

\(2n+5⋮3n+1\)

\(3n+1⋮3n+1\)

\(\Rightarrow\left\{{}\begin{matrix}6n+15⋮3n+1\\6n+3⋮3n+1\end{matrix}\right.\)

\(\Rightarrow12⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(12\right)\)

Sau đó bn lập bẳng rồi tính n thoy!!

Hk tốt nhs!!Dạo này mk mắc bệnh lười nên thông cảm

FTWXYZ11
Xem chi tiết
FTWXYZ11
27 tháng 4 2023 lúc 20:50

Làm rõ chi tiết chút nha mọi người help em 1 mạng đi 

Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 14:12

a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)

mà n nguyên

nên \(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

b: B nguyên thì 3n+5-5 chia hết cho 3n+5

=>\(3n+5\inƯ\left(-5\right)\)

mà n nguyên

nên \(3n+5\in\left\{-1;5\right\}\)

=>n=-2 hoặc n=0

c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3

=>\(2n-3\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;1\right\}\)