Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành Tiến
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 13:29

Lời giải:
$C(2)=a.2^2+b.2+c=4a+2b+c$
$C(-1)=a(-1)^2+b(-1)+c=a-b+c$

$\Rightarrow C(2)+C(-1)=4a+2b+c+(a-b+c)=5a+b+2c=0$

$\Rightarrow C(-1)=-C(2)$

$\Rightarrow C(2)C(-1)=-C(2)^2\leq 0$ 

Ta có đpcm.

nguyen thao hien
Xem chi tiết
Cá Chép Nhỏ
17 tháng 6 2019 lúc 9:10

Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c

            f(2)  = a.22 + b.2 +c = 4a + 2b + c

Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0

=> f(-1) = -f(2)

Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0

Vậy....

T.Ps
17 tháng 6 2019 lúc 9:08

#)Giải :

Ta có f(2) = 4a + 2b + c

          f(-1)= a - b + c

=> f(2) + f(-1) = 4a + 2b + c + a - b + c 

                       = 5a + b + 2c

Mà 5a + b + 2c = 0 => f(2) + f(-1) = 0 => f(2) = f(-1)

=> f(-1).f(2) ≤ 0 ( đpcm )

zZz Cool Kid_new zZz
17 tháng 6 2019 lúc 10:20

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Jiyoen Phạm
Xem chi tiết
Nguyễn Ngọc Quân
10 tháng 6 2017 lúc 8:13

a)có f(-1)=a-b+c

f(2)=4a+2b+c

=>f(-1)+ f(2)=5a+b+2c=0

=>-f(-1)=f(2)

=>f(-1).f(2)=f(-1).-f(-1)=-(f(x))2\(\le\)0

Nguyễn Văn Mạnh
Xem chi tiết
Đoàn Đức Hà
26 tháng 8 2021 lúc 16:36

\(Q\left(2\right)=4a+2b+c\)

\(Q\left(-1\right)=a-b+c\)

\(Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)

\(\Leftrightarrow Q\left(2\right)=-Q\left(-1\right)\)

\(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)

Khách vãng lai đã xóa
Mai Thanh Tâm
Xem chi tiết
Lê Hồng Thái
Xem chi tiết
Võ Thành Vinh
14 tháng 1 2016 lúc 14:23

P(1)=a+b+c

P(-2)=4a-2b+c

P(1)+P(2)=5a-3b+2c=0 => P(1) và P(2) trái dấu hoặc P(1)=P(2)=0

=>p(1).P(2) bé hơn hoặc bằng không

 

Nguyễn Thúy Hiền
17 tháng 3 2018 lúc 19:13

Ta có: P(x)=ax+ bx + c.

=> P(1)= a.12+b.1+c=a+b+c.

     P(-2)=a.(-2)2+b.(-1)+c=4a-2b+c.

Ta lại có: P(1)+P(-2)= (a+b+c)+(4a-2b+c)=5a-b+2c=0.

=> P(1)= -P(-2).

=> P(1).P(-2)= -P(-2).P(-2)= - [ P(-2)]2  <0.

Vậy: P(1).P(-2)<0

 

ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
Lê Chí Cường
12 tháng 6 2016 lúc 12:23

Ta có: P(-1).P(-2)=[a.(-1)2+b.(-1)+c].[a.(-2)2+b.(-2)+c]

=(a-b+c).(4a-2b+c)

=[(5a-4a)-(3b-2b)+(2c-c)].(4a-2b+c)

=(5a-4a-3b+2b+2c-c).(4a-2b+c)

=[(5a-3b+2c)-(4a-2b+c)].(4a-2b+c)

Vì 5a-3b+2c=0

=>P(-1).P(-2)=[0-(4a-2b+c)].(4a-2b+c)

=-(4a-2b+c).(2a-2b+c)

=-(4a-2b+c)2 

Vì \(\left(4a-2b+c\right)^2\ge0\)

=>\(-\left(4a-2b+c\right)^2\le0\)

=>\(P\left(-1\right).P\left(-2\right)\le0\)

=>ĐPCM

Hoàng Phúc
12 tháng 6 2016 lúc 12:31

Hỏi đáp Toán

Hoàng Phúc
12 tháng 6 2016 lúc 12:26

Lê Chí Cường lm dài thế

Phạm Thị Minh Tú
Xem chi tiết
Mai Linh
6 tháng 5 2016 lúc 13:33

ta có P(2)= 4a +2b +c

P(-1)= a-b+c

ta cso P(2) + P(-1)= 4a +2b+c + a -b+c= 5a +b+2c

mà 5a+b+2c=0 => P(2) + P(-1)=0  => P(2)= -P(-1)

vậy p(2).P(-1)<=0

 

Hoàng Phúc
6 tháng 5 2016 lúc 14:58

P(x =ax2+bx+c

P(2)=a.22+b.2+c=4a+2b+c  (1)

P(-1)=a.(-1)2+b.(-1)+c=a-b+c (2)

Lấy (1)+(2),vế theo vế

=>P(2)+P(-1)=4a+2b+c+a-b+c=5a+2b+c=0

=>P(2)=-P(-1)

=>\(P\left(2\right).P\left(-1\right)=-P\left(-1\right).P\left(-1\right)=-\left[P\left(-1\right)\right]^2< =0\)  (đpcm)

Ruby
Xem chi tiết
Akai Haruma
9 tháng 3 2019 lúc 0:21

Lời giải:

a)

\(f(1)=a.1^2+b.1+c=a+b+c\)

\(f(2)=a.2^2+b.2+c=4a+2b+c\)

b)

\(f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\)

Do đó:

\(f(1)+f(-2)=(a+b+c)+(4a-2b+c)=5a-b+2c=0\)

\(\Rightarrow f(-2)=-f(1)\)

\(\Rightarrow f(1)f(-2)=-f(1)^2\leq 0\)

c)

Với $a=1,b=2,c=3$ thì :

\(f(x)=x^2+2x+3=x(x+1)+(x+1)+2=(x+1)(x+1)+2\)

\(=(x+1)^2+2\)

\((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow f(x)=(x+1)^2+2\geq 2>0\)

Vậy $f(x)\neq 0$

Do đó $f(x)$ không có nghiệm.