Tìm m để:
|2m-5| < or = 5
Cho hàm số y=(2m-5)x+3
a) tìm m để y=(2m-5)x+3 cắt trục tung tại điểm ở bên trái trục tung
b) tìm m để y=(2m-5)x+3 cắt đường thẳng y= 3x+1 tại điểm có hoành độ âm
c) tìm m để y=(2m-5)x+3 cắt đường thẳng y= 5x-3 tại điểm có tung độ dương
Cho các đường thẳng d1 : y = (2m - 1)x - 2m + 5 và d₂ : y = (m + 1)x + m - 1 . a) Tìm m để d1 song song với d₂. B)Tìm m để d1 cắt d2
a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)
=>\(2m-m\ne1+1\)
=>\(m\ne2\)
tìm m để phường trình 5cos(5x+1) =2m²-m-5
Thiếu đề, để phương trình có nghiệm đúng không.
\(5cos\left(5x+1\right)=2m^2-m-5\)
\(\Leftrightarrow cos\left(5x+1\right)=\dfrac{2m^2-m-5}{5}\)
Phương trình đã cho có nghiệm khi:
\(\dfrac{2m^2-m-5}{5}\in\left[-1;1\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2m^2-m-5}{5}\le1\\\dfrac{2m^2-m-5}{5}\ge-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le m\le\dfrac{5}{2}\\\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le m\le\dfrac{5}{2}\\-2\le m\le0\end{matrix}\right.\)
a) Tìm m để hàm số y=(2m-1)x+3 đồng biến .
b) Tìm m để đường thẳng y= ( m2 - 1 )x+2m+1 song song với đường thẳng y=3x+5.
a: Để hàm số đồng biến thì 2m-1>0
hay \(m>\dfrac{1}{2}\)
b: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-1=3\\2m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)
hay m=-2
Tìm m để a giao b bằng rỗng, biết: A=[2m-1; 2m+1], B=[-1; 5)
Lời giải:
Để $A\cap B=\varnothing$ thì:
\(\left[\begin{matrix} 2m+1<-1\\ 2m-1\geq 5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m<-1\\ m\geq 3\end{matrix}\right.\)
Tìm m để phương trình sau có nghiệm:
a. \(x^2+2x+m-5=0\)
b. \(x^2+2mx+m^2-2m+5=0\)
\(a,\Leftrightarrow\Delta'=1-\left(m-5\right)\ge0\\ \Leftrightarrow6-m\ge0\Leftrightarrow m\le6\\ b,\Leftrightarrow\Delta'=m^2-\left(m^2-2m+5\right)\ge0\\ \Leftrightarrow2m-5\ge0\Leftrightarrow m\ge\dfrac{5}{2}\)
a. x2 + 2x + m - 5 =0
b2 - 4ac = 2 bình - 4. 1 . (m - 5 ) = 0
4 - 4m + 20 = 0
-4m + 24 =0
suy ra m = - 6
câu cx y như vậy :))))
Tìm các giá trị của m để phương trình x1,x2 thoả mãn : (x12 - 6x1+2m)(x22 - 6x1+2m)>5
Tìm m để các hàm số sau là hàm số bậc nhất:
a. y = (2m - 1)x + 3
b. y = \(\dfrac{m-2}{2m+1}x+5\)
c. y = \(\sqrt{m-2}.x-4\)
d. y = (m2 - 9)x2 + (m - 3)x + 5
X^2-2(m-1)x-2m=0 a, Tìm m để phương trình có 2 nghiệm phân biệt t/m x1^2+x1-x2=5-2m b,Tìm m để p trình có 2 nghiệm pb t/m x1=3x2 c,Tìm m để phương trình có 2 no pb t/m x1/x2=3
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn