cho biết x+y-z=0.Hãy tính giá trị của biểu thức
A=x3+x2y-2x2-xy-y2+3y+x-1
Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
Bài : Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0.
Help me !
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
Tính giá trị biểu thức:A=x33+x2y-2x2-xy-y2+3y+x-5. Biết x+y-2=0
Bài 1: Tìm giá trị nhỏ nhất của biểu thức [(x+1/2)2 + 5/4]
Bài 2: Cho đa thức M= x3+x2y-3x2-xy-y2+4y+x+2019
Tính giá trị của đa thức M biết x+y-3=0
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
M=x3+x2y-2x2+3y-y2-xy+x-2022
Biết x+y-2=0
M=(x3+x2y-2x2)+(2y-y2-xy)+(x+y-2)+2020
M=x2(x+y-2)+y(2-y-x)+(x+y-2)+2020
M=x2.0+y.0+0+2020
M=2020
Vậy M=2020
không hiểu chỗ nào hỏi mình nha!
Tính A=x3+x2y-2x2-xy-y2+3y+x+2019
Biết x+y-2=0
Ai làm đúng mình sẽ cho tick liền còn ko đúng thì cũng cho miễn là cho có tâm là đc
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x+2019\)
\(=x^3+x^2\left(2-x\right)-2x^2-y\left(x+y\right)+3y+x+2019\)
\(=x^3+2x^2-x^3-2x^2-2y+3y+x+2019\)
\(=x+y+2019=2021\)
ính giá trị của biểu thức sau:
H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18
Giá trị của biểu thức H = ???
giúp mình vs cần gấp ....mình sẽ hậu tạ
Cho x 2 y + z + y 2 x + z + z 2 x + y = 0 và x + y + z ≠ 0. Tính giá trị của biểu thức A = x y + z + y x + z + z x + y ?
A. 3
B. 0
C. 2
D. 1
ính giá trị của biểu thức sau:
H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18
Giá trị của biểu thức H =
Bài 3* : Tính giá trị các biểu thức sau:
a) 3x4 + 5x2y2 + 2y4 + y2 biết rằng x2 + y2 = 1
b) 7x - 7y + 4ax - 4ay - 5 biết x - y = 0
c) x3 + xy2 - x2y - y3 + 3 biết x - y = 0
d) x2 + 2xy + y2 - 4x - 4y + 1 biết rằng x + y = 3
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2