Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Hoàng Nam
Xem chi tiết
Hà Khánh Phương
15 tháng 4 2022 lúc 19:26

NGUUUUUUUU

DakiDaki
Xem chi tiết
Đỗ Tuệ Lâm
18 tháng 2 2022 lúc 9:09

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

Nguyễn Lê Phước Thịnh
18 tháng 2 2022 lúc 9:57

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Nguyễn Ngọc Diệu Châu
Xem chi tiết
hnamyuh
16 tháng 2 2023 lúc 3:18

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

Nguyễn Duy Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2023 lúc 7:45

a:

Sửa đề: \(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

=>x^2+x+1-3x^2=2x(x-1)

=>-2x^2+x+1-2x^2+2x=0

=>-4x^2+3x+1=0

=>4x^2-3x-1=0

=>4x^2-4x+x-1=0

=>(x-1)(4x+1)=0

=>x=1(loại) hoặc x=-1/4(nhận)

b: =>2x+6x=x+3(2x+1)

=>x+6x+3=8x

=>7x+3=8x

=>-x=-3

=>x=3(nhận)

lê thanh tùng
Xem chi tiết
Hoa Vô Khuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2023 lúc 10:20

b: 4(x+1)^2-9(x-1)^2=0

=>(2x+2)^2-(3x-3)^2=0

=>(2x+2-3x+3)(2x+2+3x-3)=0

=>(-x+5)(5x-1)=0

=>x=1/5 hoặc x=5

c: (x-1)^3+x^3+(x+1)^3=(x+2)^3

=>x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8

=>3x^3+6x-x^3-6x^2-12x-8=0

=>2x^3-6x^2-6x-8=0

=>x^3-3x^2-3x-4=0

=>x^3-4x^2+x^2-4x+x-4=0

=>(x-4)(x^2+x+1)=0

=>x-4=0

=>x=4

Phạm Minh Tuấn
Xem chi tiết
Nguyễn Minh Quang
6 tháng 2 2021 lúc 21:12

Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4

với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)

với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt

với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất

với \(m< -\frac{1}{3}\)pt vô nghiệm,

theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có 

\(x_1+x_2-4x_1x_2=-2\)

ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)

\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)

kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)

Khách vãng lai đã xóa
Phương Lee
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2021 lúc 17:50

1a.

\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)

b.

\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)

2.

\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)

Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:

\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)

Xét (1), với \(m=1\Rightarrow x=-3\)

- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)

Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm

Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm