Giải phương trình:
\(4Sin^2xCosx+2Cos2x=Cosx+\sqrt{3}Sin3x\)
Giải: \(4sin^2x.cosx+2cos2x=cosx+\sqrt{3}sin3x\)
cho phương trình \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\)tìm m để phương trình có ít nhất 1 nghiệm thuộc đoạn\(\left[0;\dfrac{\Pi}{2}\right]\)
\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)
Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)
\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)
Giải phương trình lượng giác bậc nhất đối với sinx và cosx:
\(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)
\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Cho phương trình: \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\).
Xác định tham số m để phương trình có ít nhất một nghiệm \(x\in\left[-\frac{\pi}{4};\frac{\pi}{4}\right]\)
Giải các pt:
a) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
b) \(2cos^2x-3\sqrt{3}sin2x-4sin^2x=-4\)
c) \(\sqrt{3}\left(cos2x+sin3x\right)=sin2x+cos8x\)
d) \(cos2x-\sqrt{3}sin2x=\sqrt{3}sinx+cosx\)
e) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x+\frac{1}{2}cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin\left(3x+\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\3x+\frac{\pi}{6}=\pi-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(\frac{1+cos2x}{2}\right)-3\sqrt{3}sin2x-4\left(\frac{1-cos2x}{2}\right)=-4\)
\(\Leftrightarrow3cos2x-3\sqrt{3}sin2x=-3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
c/
Ủa đề câu này bạn ghi đúng ko? Nhìn kì kì, cos8x hay cos3x bên vế phải vậy?
d/
\(\Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=x-\frac{\pi}{3}+k2\pi\\2x+\frac{\pi}{3}=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2\pi}{3}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
giúp mik vs1: \(cos^3x+4sin^3x-3cosxsin^2x+sinx\)
2; \(sin^3x\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}sinx\)
3; \(2cos^3x=sin3x\)
4; \(4sin^3x+3cos^3x-3sinx-sin^2xcosx\)
Giải phương trình: \(sin3x-cos3x+sinx+cosx=\dfrac{1}{sin3x+cosx}-\dfrac{1}{cos3x-sinx}\)
ĐKXĐ: ...
\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)
\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)
\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)
\(\Leftrightarrow sinx+cosx=0\) (loại)
(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)
\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)
\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)
\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)
\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)
\(\Leftrightarrow...\)
1) 2sinx + cosx = sin2x + 1
2) (1 + cosx)(1+sinx) = 2
3) 3cos4x - 8cos6x + 2cos2x +3 =0
4) sin3x + cos3x.sinx + cosx = \(\sqrt{2}\)cos2x
5) (2cosx -1)(2sinx + cosx) = sin2x - sinx
Bài 1 Giải PT
a) sin3x - \(\sqrt{3}cos3x\) = 1
b) 3sin3x + \(\sqrt{3}cos9x\) = 1 + 4sin33x
c) \(\sqrt{3}cos4x\) + sin4x = 2
d) cos3x - sin2x = \(\sqrt{3}\)(cos3x - sin3x)
Bài 2: Cho PT 2m(sinx + cosx) = 2m2 + cosx - sinx +\(\frac{3}{2}\)
a) Giải PT với m= 1
b) Tìm m để PT có nghiệm
Có b nào gipus mk với cần gấp gấp :)