Chứng minh rằng với mọi số nguyên dương N ta có A=52n+5n-6n(3n+2n)là bội số của 91
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi n thuộc N* thì tích của (n+1).(3n+2) là một số chẵn.
Chứng tỏ rằng 3n + 5 và 2n + 3 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Ai nhanh mk tick luôn
gọi UCLN(2n+3, 3n+5) là d
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)
Tính giá trị của biểu thức
A= xyz+xz-yz-z+xy+x-y-1 với x= -9; y =-21; z=-31
Chứng minh rằng
A) n3+3n2+2n chia hết cho 6 với mọi n là số nguyên
B) 49n+77n-29n-1 chia hết cho 48
C) 35x-14y+29-1 chia hết cho 7 với mọi x,y là số nguyên
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
Với mỗi số thực a, ta gọi phần nguyên không vượt quá a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
Điền đúng hoặc sai
a)Giá trị tuyệt đối của một số nguyên luôn là số tự nhiên
b)Tổng của một số nguyên âm với một số nguyên dương luôn là số nguyên dương
c)Hiệu của một số nguyên âm với một số nguyên dương luôn là số nguyên âm
d)Số 0 là bội của mọi số nguyên
a) Giá trị tuyệt đối của một số nguyên luôn là số tự nhiên Đúng
b) Tổng của một số nguyên âm với một số nguyên dương luôn là số nguyên dương Sai
c) Hiệu của một số nguyên âm với một số nguyên dương luôn là số nguyên âm Đúng
d) Số 0 là bội của mọi số nguyên Đúng
chứng minh rằng mọi phân số có dạng \(\frac{n+1}{2n+3}\)với ( n thuộc N ) đều là phân số tối giản
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
Chứng minh rằng nếu 2 số a ; b là hai số nguyên khác 0 và a là bội của b.b là bội của a thì a=b hoặc a=-b
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
Bài 18 : Chứng minh rằng mọi số tự nhiên n , các số sau đây là hai số nguyên tố cùng nhau :
a ) n+2 va n + 3
b) 2n + 3 va 3n +5
a) gọi UCLN(n+2;n+3)=d
ta có :
n+2 chia hết cho d
n+3 chia hết cho d
=>(n+3)-(n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;n+3)=1
=>nguyên tố cùng nhau
b)
gọi UCLN(2n+3;3n+5)=d
ta có : 2n+3 chia hết cho d =>3(2n+3) chia hết cho d =>6n+9 chia hết cho d
3n+5 chia hết cho d => 2(3n+5) chia hết cho d =>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n+3;3n+5)=1
=>nguyên tố cùng nhau
=>ĐPCM