Cho ba điểm \(A\left(2;1\right);B\left(0;5\right);C\left(-5;-10\right)\)
a) Tìm tọa độ trọng tâm G, trực tâm H và tâm I đường tròn ngoại tiếp tam giác ABC
b) Chứng minh I, G, H thẳng hàng
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC
Cho ba điểm A, B, C. Chứng minh \(3\left( {\overrightarrow {AB} + 2\overrightarrow {BC} } \right) - 2\left( {\overrightarrow {AB} + 3\overrightarrow {BC} } \right) = \overrightarrow {AB} \)
Ta có: \(3\left( {\overrightarrow {AB} + 2\overrightarrow {BC} } \right) - 2\left( {\overrightarrow {AB} + 3\overrightarrow {BC} } \right)\)\( = 3\overrightarrow {AB} + 3.\left( {2\overrightarrow {BC} } \right) - \left[ {2\overrightarrow {AB} + 2.\left( {3\overrightarrow {BC} } \right)} \right]\)
\[ = 3\overrightarrow {AB} + 6.\overrightarrow {BC} - \left( {2\overrightarrow {AB} + 6.\overrightarrow {BC} } \right)\]\[ = 3\overrightarrow {AB} + 6.\overrightarrow {BC} - 2\overrightarrow {AB} - 6.\overrightarrow {BC} \]
\[ = \left( {3\overrightarrow {AB} - 2\overrightarrow {AB} } \right) + \left( {6.\overrightarrow {BC} - 6.\overrightarrow {BC} } \right) = \overrightarrow {AB} .\]
Cho ba điểm : \(B\left(-1;-2\right);A\left(2;1\right);C\left(0;-1\right)\)
a. Viết phương trình đường thẳng AB.
b. Chứng minh ba điểm A,B,C thẳng hàng.
c. Tìm a,b để : \(y=\left(2a-b\right)x+3a-1\) đi qua điểm B và C.
Trong không gian cho ba điểm A B C , , cố định không thẳng hàng, tìm tập hợp điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Gọi D là trung điểm BC và G là trọng tâm tam giác ABC
Theo tính chất trọng tâm: \(AG=\dfrac{2}{3}AD\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MA}+\overrightarrow{CM}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{BA}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|-2\overrightarrow{AD}\right|\)
\(\Leftrightarrow MG=\dfrac{2}{3}AD=AG\)
\(\Rightarrow\) Tập hợp M là mặt cầu tâm G bán kính AG với G là trọng tâm tam giác ABC
Câu 3. Trong mặt phẳng tọa độ $Oxy$ cho ba điểm $A\left( 4;6 \right), \, B\left( -3;5 \right), \, C\left( 1;7 \right)$.
a) Viết phương trình đường tròn $\left( T \right)$ đi qua ba điểm $A, \, B, \, C$. Tìm tọa độ tâm $I$ và tính bán kính của đường tròn $\left( T \right)$.
b) Viết phương trình các tiếp tuyến của đường tròn biết tiếp tuyến song song với trục tọa độ.
Cho ba điểm \(B=\left(-2;3\right)\) ;\(C=\left(3;3\right)\) ;\(D=\left(3;-2\right)\) . Biết A là điểm có tọa độ sao cho 4 điểm A; B; C; D tạo thành hình vuông. Tính diện tích hình vuông ABCD.
Theo hệ trục toạ độ ( bạn tự vẽ nha ), để ABCD là hình vuông => \(A\left(-2;-2\right)\)
Ta có : độ dài AB=\(\sqrt{\left(-2+2\right)^2+\left(-2-3\right)^2}=\sqrt{25}=5\)
=> Diện tích của hình v ABCD=\(5^2=25\)( đơn vị )
1. Trong mặt phẳng tọa độ xOy cho ba điểm \(A\left(5,-8\right),B\left(-3,-2\right),C\left(11,0\right)\). Xác định tọa độ điểm M thuộc Ox sao cho\(\overrightarrow{AM}.\overrightarrow{MB}\) có giá trị nhỏ nhất.
2. Cho tam giác ABC có góc nhọn A, D và E lần lượt là hai điểm nằm ngoài tam giác sao cho tam giác ABD và tam giác ACE vuông cân tại A. M là trung điểm của BC. Chứng minh \(AM\perp DE\)
3. Trong mặt phẳng tọa độ xOy cho ba điểm \(A\left(1,2\right),B\left(-3,0\right),C\left(0,4\right)\). Xác định tọa độ điểm M thuộc Ox sao cho\(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) có giá trị nhỏ nhất.
Cho tam giác ABC
a) Tìm điểm N sao cho \(2\overrightarrow{NA}+\overrightarrow{NB}=3\overrightarrow{BC}\)
b) Tìm tập hợp các điểm M sao cho \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{BA}-\overrightarrow{BC}\right|\)
a) Từ điểm I trên AB thỏa mãn IA = 1/2 IB ta vẽ đường song song với BC. Điểm N nằm trên đó.
B) tương tự câu a)
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $B$, $BA=BC=a$, $AD=2a$. Cạnh bên $SA$ vuông góc với mặt đáy và $SA=a\sqrt{2}$.
a) (1 điểm) Chứng minh $\left( SAB \right) \perp \left( SAD \right)$.
b) (1 điểm) Tính góc giữa đường thẳng $SC$ và mặt phẳng $\left( SAB \right)$.
c) (1 điểm) Gọi $H$ là hình chiếu vuông góc của $A$ lên $SB$. Tính khoảng cách từ $H$ đến mặt phẳng $\left( SCD \right)$.
a) Ta có {AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD){AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD).
b) Ta có {BC⊥ABBC⊥SA⇒BC⊥(SAB){BC⊥ABBC⊥SA⇒BC⊥(SAB).
Suy ra góc giữa SCSC và (SAB)(SAB) là góc ˆCSBCSB^.
Xét tam giác SABSAB vuông tại AA có SB=√AB2+SA2=a√3SB=AB2+SA2=a3. tanˆCSB=CBSB=aa√3=1√3⇒ˆCSB=30∘tanCSB^=CBSB=aa3=13⇒CSB^=30∘.
Vậy ˆ(SC,(SAB))=30∘(SC,(SAB))^=30∘
c) Gọi MMlà trung điểm ADAD.
Suy ra ABCMABCM là hình vuông và CM=AB=aCM=AB=a.
Suy ra CM=12ADCM=12AD nên ΔACDΔACD vuông tại CC hay AC⊥CDAC⊥CD.
Ta có {CD⊥ACCD⊥SA⇒CD⊥(SAC){CD⊥ACCD⊥SA⇒CD⊥(SAC).
Kẻ AK⊥SC (K∈SC)AK⊥SC (K∈SC)
⇒AK⊥(SCD)⇒d(A,(SCD))=AK⇒AK⊥(SCD)⇒d(A,(SCD))=AK.
AC=√AB2+BC2=a√2AC=AB2+BC2=a2.
Do đó d(A,(SCD))=AK=SA.AC√SA2+AC2=ad(A,(SCD))=AK=SA.ACSA2+AC2=a. (∗)(∗)
Trong (ABCD)(ABCD), gọi {E}=AB∩CD{E}=AB∩CD.
Ta có ⎧⎨⎩BC//ADBC=12AD{BC//ADBC=12AD nên BCBC là đường trung bình của ΔEADΔEAD.
⇒SB⇒SB là đường trung tuyến của ΔSAEΔSAE. (1)(1)
Mặt khác, tam giác ΔSAEΔSAE vuông tại AA có chiều cao AHAH cho ta SH.SB=SA2 ⇒ SHSB=SA2SB2=23SH.SB=SA2 ⇒ SHSB=SA2SB2=23 (2)(2)
Từ (1)(1) và (2)(2) suy ra HH là trọng tâm tam giác ΔSAEΔSAE.
Trong (SAE)(SAE), gọi {L}=AH∩SE⇒⎧⎨⎩AH∩(SCD)={L}LHLA=13{L}=AH∩SE⇒{AH∩(SCD)={L}LHLA=13.
⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗)⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗).
Từ (∗)(∗) và (∗∗)(∗∗) suy ra d(H,(SCD))=a3d(H,(SCD))=a3.
Trong hệ trục tọa độ Oxy cho ba điểm A(1; -4) , B(4;5) và C(0;-9). Điểm M di chuyển trên trục Ox . Đặt Q=\(2\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|+3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\) . Biết giá trị nhỏ nhất của Q có dạng \(a\sqrt{b}\)
trong đó a, b là các số nguyên dương a, c< 20. Tính a-b
Do M thuộc Ox, gọi tọa độ M có dạng \(M\left(m;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;-4\right)\\\overrightarrow{MB}=\left(4-m;5\right)\\\overrightarrow{MC}=\left(-m;-9\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+2\overrightarrow{MB}=\left(9-3m;6\right)\\\overrightarrow{MB}+\overrightarrow{MC}=\left(4-2m;-4\right)\end{matrix}\right.\)
\(Q=2\sqrt{\left(9-3m\right)^2+6^2}+3\sqrt{\left(4-2m\right)^2+\left(-4\right)^2}\)
\(=\sqrt{\left(6m-18\right)^2+12^2}+\sqrt{\left(12-6m\right)^2+12^2}\)
\(=\sqrt{\left(18-6m\right)^2+12^2}+\sqrt{\left(6m-12\right)^2+12^2}\)
\(Q\ge\sqrt{\left(18-6m+6m-12\right)^2+\left(12+12\right)^2}=6\sqrt{17}\)
\(\Rightarrow a-b=-11\)
Trong mặt phẳng tọa độ Oxy cho ba điểm A(-1; -2), B(3; 2), C(4; -1). Biết điểm E(a; b) di động trên đường thẳng AB sao chop \(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|\) đạt Min. Tính \(a^2-b^2\)
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{AE}=\left(a+1;b+2\right)\) mà E di động trên đường thẳng AB nên A,B,E thẳng hàng tương đương với \(\dfrac{a+1}{4}=\dfrac{b+2}{4}\) <=> \(a=b+1\).Vậy E(b+1;b)
Đặt \(\overrightarrow{u}=2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\) => \(\overrightarrow{u}=\left(-1-4b;3-4b\right)\)
có : \(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|=\left|\overrightarrow{u}\right|=\sqrt{\left(-1-4b\right)^2+\left(3-4b^2\right)}\)
Đặt : 1-4b = t => \(\left\{{}\begin{matrix}-1-4b=t-2\\3-4b=t+2\end{matrix}\right.\) khi đó \(\left|\overrightarrow{u}\right|=\sqrt{\left(t-2\right)^2+\left(t+2\right)^2}=\sqrt{2t^2+8}\ge2\sqrt{2}\)
\(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|\)đạt GTNN khi và chỉ khi t =0 <=> b=1/4 => a=5/4
vậy \(a^2-b^2=\dfrac{3}{2}\)